Publication: Neural network-based optimization of fibres for seismic retrofitting applications of UHPFRC
Abstract (Spanish)
Abstract (English)
Extent
Collections
Collections
References
Abbas, S., Nehdi, M. L., & Saleem, M. A. (2016). Ultra-high performance concrete: Mechanical performance, durability, sustainability and implementation challenges. International Journal of Concrete Structures and Materials, 10(3), 271–295. https://doi.org/10.1007/s40069-016-0157-4
Abdulkareem, O. M., Ben Fraj, A., Bouasker, M., & Khelidj, A. (2018). Effect of chemical and thermal activation on the microstructural and mechanical properties of more sustainable UHPC. Construction and Building Materials, 169, 567–577. https://doi.org/10.1016/j.conbuildmat.2018.02.214
Abellan, J., Fernandez, J., Torres, N., & Nu~ nez, A. (2020a). Development of cost-efficient UHPC with local materials in Colombia. In Proceedings of Hipermat 2020- 5th International Symposium on UHPC and Nanotechnology Construction Materials (pp. 97–98). Kassel University Press.
Abellan, J., Fernandez, J., Torres, N., & Nu~ nez, A. (2020b). Statistical optimization of ultra-high-performance glass concrete. ACI Materials Journal, 117, 243–254. https://doi.org/10.14359/51720292
Abellan, J., Nu~ nez, A., & Arango, S. (2020). Pedestrian bridge of UNAL in Manizales: A new UPHFRC application in the Colombian building market. In: Proceedings of Hipermat 2020- 5th International Symposium on UHPC Nanotechnology Construction (pp. 43–44). Kassel University Press.
Abellan, J., Torres, N., Nu~ nez, A., & Fernandez, J. (2018). Ultra high preformance fiber reinforced concrete: State of the art, applications and possibilities into the Latin American market. In: XXXVIII Jornadas Sudamericanas de Ingenieria Estructural, Lima, Peru.
Abellan, J., Torres, N., Nu~ nez, A., & Fernandez, J. (2018). Influencia del exponente de Fuller, la relacion agua conglomerante y el contenido en policarboxilato en concretos de muy altas prestaciones, In: IV Congr. Int. Ing. Civ., Havana, Cuba.
Abellan-Garcıa, J. (2020a). Comparison of artificial intelligence and multivariate regression in modeling the flexural behavior of UHPFRC. Dyna, 87, 239–248. https://doi.org/10.15446/dyna.v87n214.86172.
Abellan-Garcıa, J. (2020b). Dosage optimization and seismic retrofitting applications of UltraHighPerformance Fiber Reinforced Concrete (UHPFRC). PhD Thesis. Universidad Politecnica de Madrid.
Abellan-Garcıa, J. (2020c). Four-layer perceptron approach for strength prediction of UHPC. Construction and Building Materials, 256, 119465. https://doi.org/10.1016/j.conbuildmat.2020.119465
Abellan-Garcıa, J. (2021). K-fold validation neural network approach for predicting the one-day compressive strength of UHPC. Advances in Civil Engineering Materials, 10(1), 20200055. https://doi.org/10.1520/ ACEM20200055
Abellan-Garcıa, J., Fernandez-Gomez, J. A., Torres-Castellanos, N., & Nu~ nez-Lopez, A. M. (2020). Machine learning prediction of flexural behavior of UHPFRC. In P. Serna, A. Llano-Torre, J. R. Martı-Vargas, & J. Navarro-Gregori (Eds.), Fibre Reinforced Concrete: Improvements and Innovations. BEFIB 2020, RILEM Bookseries (pp. 570–583). Springer Nature Switzerland AG https://doi.org/10.1007/978-3-030-58482-5_ 52 .
Abellan-Garcıa, J., Fernandez-Gomez, J., & Torres-Castellanos, N. (2020). Properties prediction of environmentally friendly ultra-high-performance concrete using artificial neural networks. European Journal of Environmental and Civil Engineering,1–25. https://doi.org/10.1080/19648189.2020.1762749
Abellan-Garcıa, J., Fernandez-Gomez, J., Torres-Castellanos, N., & Nu~ nez-Lopez, A. (2021). Tensile behavior of normal strength steel fiber green UHPFRC. ACI Materials Journal, 118, 127–138. https://doi.org/10. 14359/51725992
Abellan-Garcıa, J., & Guzman-Guzman, J. S. (2021). Random forest-based optimization of UHPFRC under ductility requirements for seismic retrofitting applications. Construction and Building Materials, 285, 122869. https://doi.org/10.1016/j.conbuildmat.2021.122869
Abellan-Garcıa, J., Guzman-Guzman, J. S., Sanchez-Dıaz, J. A., & Rojas-Grillo, J. (2021). Experimental validation of artificial intelligence model for the energy absorption capacity of UHPFRC. Dyna, 88, 150–159. https://doi.org/10.15446/dyna.v88n217.
Abellan-Garcıa, J., Nu~ nez-Lopez, A., & Arango-Campo, S. (2020). Pedestrian bridge over Las Vegas Avenue in Medellın. First Latin American infrastructure in UHPFRC. In P. Serna, A. Llano-Torre, J. R. Martı-Vargas, & J. Navarro-Gregori (Eds.), Fiber Reinforced Concrete: Omprovements and Innovations, BEFIB 2020, RILEM Bookseries (pp. 864–872). Springer Nature Switzerland AG. https://doi.org/10.1007/978-3-03058482-5_76.
Abellan-Garcıa, J., Nu~ nez-Lopez, A., Torres-Castellanos, N., & Fernandez-Gomez, J. (2019). Effect of FC3R on the properties of ultra-high-performance concrete with recycled glass. Dyna, 86, 84–92. https://doi.org/ 10.15446/dyna.v86n211.79596
Abellan-Garcıa, J., Nu~ nez-Lopez, A., Torres-Castellanos, N., & Fernandez-Gomez, J. (2020). Factorial design of reactive powder concrete containing electric arc slag furnace and recycled glass powder. Dyna, 87, 42–51. https://doi.org/10.15446/dyna.v87n213.82655.
Abellan-Garcia, J., Santofimo-Vargas, M. A., & Torres-Castellanos, N. (2020). Analysis of metakaolin as partial substitution of ordinary Portland cement in Reactive Powder Concrete. Advances in Civil Engineering Matrials, 9, 368–386. https://doi.org/10.1520/ACEM20190224
Abellan-Garcıa, J., Torres-Castellanos, N., Fernandez-Gomez, J. A., & Nu~ nez-Lopez, A. M. (2021). Ultra-highperformance concrete with local high unburned carbon fly ash. Dyna, 88, 38–47. https://doi.org/10. 15446/dyna.v88n216.89234.
ACI Committe 239R, (2018). ACI– 239 Committee in Ultra-High Performance Concrete, ACI, Toronto. Acker, P., & Behloul, M. (2004). Ductal technology: A large spectrum of properties, a wide range of applications. In: M. Fr€ ohlich & S. Piotrowski (Eds.), Proc. Int. Symp. Ultra High Perform. Concr. (pp. 11–24). Kassel University.
Adeli, H. (2001). Neural networks in civil engineering: 1989 2000. Computer-Aided Civil and Infrastructure Engineering, 16(2), 126–142. https://doi.org/10.1111/0885-9507.00219
Aderaw, M., Muse, S., & Abiero, Z. C. (2018). Artificial neural network based modelling approach for strength prediction of concrete incorporating agricultural and construction wastes. Construction and Building Materials, 190, 517–525. https://doi.org/10.1016/j.conbuildmat.2018.09.097
AlHallaq, A. F., Tayeh, B. A., & Shihada, S. (2017). Investigation of the bond strength between existing concrete substrate and UHPC as a repair material. International Journal of Engineering and Advanced Technology, 6, 210–217.
Asociacion Colombiana de IngenierıaSısmica (2010). Reglamento Colombiano de construccionsismo resistente. NSR-10. Asociacion Colombiana de Ingenierıa.
Atkinson, A., & Riani, M. (2000). Robust diagnostic regression analysis. Springer US.
Bracci, J. M., Reinhorn, A. M., & Mander, J. B. (1955). Seismic resistance of reinforced concrete frame structures designed for gravity loads: Performance of structural system. ACI Structural Journal, 92(5), 597–609.
Byars, E. A., Waldron, P., Dejke, V., & Demis, S. (2001). Durability of FRP in concrete current specifications and a new approach. FRP Compos.
Centro de Estudios e Investigaciones Sobre Riesgo. (2005). Escenarios de riesgo y perdidas por terremoto para Bogota. University of Los Andes.
Chandwani, V., Agrawal, V., & Nagar, R. (2014). Applications of artificial neural networks in modeling compressive strength of concrete: A state of the art review. Advances in Artificial Neural Systems, 2014, 1–2956. https://doi.org/10.1155/2014/629137
Chandwani, V., Agrawal, V., & Nagar, R. (2015). Modeling slump of ready mix concrete using genetic algorithms assisted training of artificial neural networks. Expert Systems with Applications, 42(2), 885–893. https://doi.org/10.1016/j.eswa.2014.08.048
Chao, S. (2016). Seismic behavior of ultra-high-performance fiber-reinforced concrete moment frame members [Paper presentation]. International Interactive Symposium on UHPC (pp. 1–10). TOCIEJ-13-147
Chollet, F., & Allaire, J. J. (2018). Deep learning with R. Manning Publications Co.
Dagenais, M. A., Massicotte, B., & Boucher-Proulx, G. (2018). Seismic retrofitting of rectangular bridge piers with deficient lap splices using ultrahigh-performance fiber-reinforced concrete. Journal of Bridge Engineering, 23,1–13. https://doi.org/10.1061/(ASCE)BE.1943-5592.0001173
De Domenico, D., Impollonia, N., & Ricciardi, G. (2019). Seismic retrofitting of confined masonry-RC buildings: The case study of the university hall of residence in Messina, Italy. IngenierıaSısmica, 36,54–85.
De Larrard, F. (1999). Concrete mixture proportioning: A scientific approach. (1st ed.). CRC Press. https:// doi.org/10.1201/9781482272055
De Larrard, F., & Sedran, T. (2002). Mixture-proportioning of high-performance concrete. Cement and Concrete Research, 32(11), 1699–1704. https://doi.org/10.1016/S0008-8846(02)00861-X
Derringer, G., & Suich, R. (1980). Simultaneous optimization of several response variables. Journal of Quality Technology, 12(4), 214–219. https://doi.org/10.1080/00224065.1980.11980968
Dogan, E., & Krstulovic-Opara, N. (2003). Seismic retrofit with continuous slurry-infiltrated mat concrete jackets. ACI Structural Journal, 100, 713-722.
Estebon, M. D. (1997). Perceptrons: An associative learning network. Virginia Tech.
Everitt, B., & Hothorn, T. (2015). MVA: An introduction to applied multivariate analysis with R. Springer.
Funk, J. E. J. E., & Dinger, D. R. (1994). Predictive process control of crowded particulate suspensions: Applied to ceramic manufacturing. Springer Science. https://doi.org/10.1007/978-1-4615-3118-0
Garcia, L. E. (2014). Desarrollo de la normativa sismo resistente colombiana en los 30 a~ nos desde su primera expedicion. Revista de Ingenierıa, 41,71–77.
Ghafari, E. (2012). Optimization of UHPC by adding nanomaterials. In Proceedings of Hipermat 2012, 3rd Int. Symp. UHPC Nanotechnol. Constr. Mater., Kassel Uni, Kassel, Alemania (pp. 71–78).
Ghafari, E., Bandarabadi, M., Costa, H., & Julio, E. (2015). Prediction of fresh and hardened state properties of UHPC: Comparative study of statistical mixture design and an artificial neural network model. Journal of Materials in Civil Engineering, 27(11), 04015017. https://doi.org/10.1061/(ASCE)MT.1943-5533. 0001270
Ghafari, E., Costa, H., & Julio, E. (2015). Statistical mixture design approach for eco-efficient UHPC. Cement and Concrete Composites, 55,17–25. https://doi.org/10.1016/j.cemconcomp.2014.07.016
Ghafari, E., Costa, H., Julio, E., Portugal, A., & Dur~ aes, L. (2012). Enhanced durability of ultra high performance concrete by incorporating supplementary cementitious materials. In Second Int. Conf. Microstruct. Durab. Cem. Compos (pp. 11–13).
Ghafari, E., Costa, H., Nuno, E., & Santos, B. (2014). RSM-based model to predict the performance of selfcompacting UHPC reinforced with hybrid steel micro-fibers. Construction and Building Materials, 66, 375–383. https://doi.org/10.1016/j.conbuildmat.2014.05.064
Ghafari, E., Costa, H., Nuno, E., Santos, B., Costa, H., & Julio, E. (2015). Critical review on eco-efficient ultra high performance concrete enhanced with nano- materials. Construction and Building Materials, 101, 201–208. https://doi.org/10.1016/j.conbuildmat.2015.10.066
Gupta, S. (2013). Using artificial neural network to predict the compressive strength of concrete containing nano-silica. Civil Engineering and Architecture, 1(3), 96–102. https://doi.org/10.13189/cea.2013. 010306
Haber, Z. B., Munoz, J. F., & Graybeal, B. A. (2017). Field testing of an ultra-high performance concrete overlay. Technical Report. U.S. Department of Transportation. Federal Highway Administration.
H€ ardle, W. K., & Simar, L. (2012). Applied multivariate statistical analysis. Springer-Verlag GmbH.
Hudson Beale, M. (2012). Neural network toolbox user’s guide. MathWorks J.
Kalny, M., Kvasnicka, V., & Komanec, J. (2016). First practical applications of UHPC in the Czech Republic. In E. Fehling, B. Middendorf, & J. Thiemicke (Eds.), Proc. Hipermat 2016- 4th Int. Symp. UHPC Nanotechnol. Constr. Mater. (pp. 147–148). Kassel.
Khan, M. I., Al-Osta, M. A., Ahmad, S., & Rahman, M. K. (2018). Seismic behavior of beam-column joints strengthened with ultra-high performance fiber reinforced concrete. Composite Structures, 200, 103–119. https://doi.org/10.1016/j.compstruct.2018.05.080
Khashman, A., & Akpinar, P. (2017). ScienceDirect non-destructive prediction of concrete compressive strength using neural networks prediction of concrete compressive strength using neural networks. Procedia Computer Science, 108, 2358–2362. https://doi.org/10.1016/j.procs.2017.05.039
Kim, D.-J., Naaman, A. E., & El-Tawil, S. (2009). High performance fiber reinforced cement composites with innovative slip hardending twisted steel fibers. International Journal of Concrete Structures and Materials, 3(2), 119–126. https://doi.org/10.4334/IJCSM.2009.3.2.119
Kim, D. J., Park, S. H., Ryu, G. S., & Koh, K. T. (2011). Comparative flexural behavior of hybrid ultra high performance fiber reinforced concrete with different macro fibers. Construction and Building Materials, 25(11), 4144–4155. https://doi.org/10.1016/j.conbuildmat.2011.04.051
Kou, S. C., & Xing, F. (2012). The effect of recycled glass powder and reject fly ash on the mechanical properties of fibre-reinforced ultrahigh performance concrete, hindawi publ. Advances in Materials Science and Engineering, 2012,1–8. https://doi.org/10.1155/2012/263243
Kwon, S., Nishiwaki, T., Kikuta, T., & Mihashi, H. (2014). Development of ultra-high-performance hybrid fiber-reinforced cement-based composites. ACI Materials Journal, 111, 309–318. https://doi.org/10. 14359/51686890
Larrard, F. (1994). Optimization of ultra-high performance concrete by the use of a packing model. Cement and Concrete Research, 24, 997–1009.
Lavorato, D., Bergami, A. V., Nuti, C., Briseghella, B., Xue, J., Tarantino, A. M., Marano, G. C., & Santini, S. (2017). Ultra-high-performance fibre-reinforced concrete jacket for the repair and the seismic retrofitting of Italian and Chinese RC bridges [Paper presentation]. COMPDYN 2017- Proc. 6th Int. Conf. Comput. Methods Struct. Dyn. Earthq. Eng. (Vol. 1, pp. 2149–2160). Eccomas Proceedia. https://doi.org/10.7712/ 120117.5556.18147.
Martin-Sanz, H., Chatzi, E., & Br€ uhwiler, E. (2016). The use of ultra high performance fibre reinforced cement-based composites in rehabilitation projects: A review.[Paper presentation] In V. Saouma, J. Bolander, & E. Landis (Eds.), 9th International Conference on Fracture Mechanics of Concrete and Concrete Structures. https://doi.org/10.21012/fc9.219
Massicotte, B., Dagenais, M.-A., & Lagier, F. (2013). Performance of UHPFRC jackets for the seismic strengthening of bridge piers. RILEM-Fib-AFGC Int. Symp. Ultra-High Perform. Fibre-Reinforced (pp. 89–98). Springer.
Moriasi, D. N., Arnold, J. G., Liew, M. W V., Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed in simulations. American Society of Agricultural and Biological Engineers, 50, 885–900.
Mushgil, H. M., Alani, H. A., & George, L. E. (2015). Comparison between resilient and standard back propagation algorithms efficiency in pattern recognition. International Journal of Scientific and Engineering Research, 6, 773–778.
Naaman, A. E., & Reinhardt, H. W. (2007). Proposed classification of HPFRC composites based on their tensile response. Materials and Structures, 39(5), 547–555. https://doi.org/10.1617/s11527-006-9103-2
Nash, E., & Sutcliffe, V. (1970). River flow forecasting through conceptual models. Part I- A discussion of principles. Journal of Hydrology, 10(3), 282–290. https://doi.org/10.1016/0022-1694(70)90255-6
Park, S. H., Kim, D. J., Ryu, G. S., & Koh, K. T. (2012). Tensile behavior of ultra high performance hybrid fiber reinforced concrete. Cement and Concrete Composites, 34(2), 172–184. https://doi.org/10.1016/j. cemconcomp.2011.09.009
Parra-Montesinos, G., & Wight, J. K. (2000). Seismic behavior, strength and retrofit of RC column-to-steel beam connections. nisee.berkeley.edu. Retrieved from http://nisee.berkeley.edu/elibrary/Text/S37269
Prasad, N., Singh, R., & Lal, S. P. (2013). Comparison of back propagation and resilient propagation algorithm for spam classification [Paper presentation]. Proc. Int. Conf. Comput. Intell. Model. Simul. (pp. 29–34). https://doi.org/10.1109/CIMSim.2013.14. IEEE.
Pyo, S., El-Tawil, S., & Naaman, A. E. (2016). Direct tensile behavior of ultra high performance fiber reinforced concrete (UHP-FRC) at high strain rates. Cement and Concrete Research, 88, 144–156. https://doi. org/10.1016/j.cemconres.2016.07.003
Pyo, S., El-Tawil, S., & Naaman, A. E. (2016). Direct tensile behavior of ultra high performance fiber reinforced concrete (UHP-FRC) at high strain rates. Cement and Concrete Research, 88, 144–156. https://doi. org/10.1016/j.cemconres.2016.07.003
Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65(6), 386–408. https://doi.org/10.1037/h0042519
Rosenblatt, F. (1958). The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review, 65(6), 386–408. https://doi.org/10.1037/h0042519
Ruiz-Pinilla, J. C., Pallares, F. J., Gimenez, E., & Calderon, P. A. (2014). Experimental tests on retrofitted RC beam-column joints underdesigned to seismic loads. Engineering Structures, 59, 702–714. https://doi. org/10.1016/j.engstruct.2013.11.008
Ryu, G. S., Kim, S. H., Ahn, G. H., & Koh, K. T. (2012). Evaluation of the direct tensile behavioral characteristics of UHPC using twisted steel fibers. Advanced Materials Research, 602–604, 96–101. https://doi.org/ 10.4028/www.scientific.net/AMR.602-604.96
Ryu, G. S., Kim, S. H., Ahn, G. H., & Koh, K. T. (2012). Evaluation of the direct tensile behavioral characteristics of UHPC using twisted steel fibers. Advanced Materials Research, 602–604, 96–101. https://doi.org/ 10.4028/www.scientific.net/AMR.602-604.96
Schmidt, C., & Schmidt, M. (2012). Whitetopping’ of asphalt and concrete pavements with thin layers of ultra-high-performance concrete- Construction and economic efficiency. In: M. Fr€ ohlich & S. Piotrowski (Eds.), 3rd Int. Symp. UHPC Nanotechnol. High Perform. Constr. Mater. (pp. 921–927). Kassel University.
Shaaban, M., & Ahmed, S. (2016). Development of ultra-high performance concrete jointed precast decks and concrete piles in integral abutment bridges. In First Int. Symp. Jointless Sustain. Bridg., Fujian, China. https://www.academia.edu/25363851/development_of_ultra-high_performance_concrete_for_ jointed_precast_decks_and_concrete_piles_in_integral_abutment_bridges.
Soliman, N. A., & Tagnit-Hamou, A. (2017a). Partial substitution of silica fume with fine glass powder in UHPC: Filling the micro gap. Construction and Building Materials, 139, 374–383. https://doi.org/10.1016/ j.conbuildmat.2017.02.084
Soliman, N. A., & Tagnit-Hamou, A. (2017b). Using glass sand as an alternative for quartz sand in UHPC. Construction and Building Materials, 145, 243–252. https://doi.org/10.1016/j.conbuildmat.2017.03.187
Soliman, N. A., & Tagnit-Hamou, A. (2017c). Using particle packing and statistical approach to optimize eco-efficient ultra-high-performance concrete. ACI Materials Journal, 114, 847–858. https://doi.org/10. 14359/51701001
Soranakom, C., & Mobasher, B. (2008). Correlation of tensile and flexural responses of strain softening and strain hardening cement composites. Cement Concr. Compos. 30(6), 465–477. https://doi.org/10.1016/j. cemconcomp.2008.01.007
Srinivasulu, S., & Jain, A. (2006). A comparative analysis of training methods for artificial neural network rainfall– runoff models. Applied Soft Computing, 6(3), 295–306. https://doi.org/10.1016/j.asoc.2005.02. 002
Taghaddos, H., Mahmoudzadeh, F., Pourmoghaddam, A., & Shekarchizadeh, M. (2004). Prediction of compressive strength behaviour in RPC with applying an adaptive network-based fuzzy interface system. In: Proc. Int. Symp. Ultra High Perform (pp. 273–284). Kassel University Press.
Tagnit-Hamou, A., Soliman, N. A., & Omran, A. (2016). Green ultra- high- performance glass concrete. First Int. Interact. Symp. UHPC– 2016, 3,1–10.
Tayeh, B. A., Abu Bakar, B. H., Megat Johari, M. A., & Voo, Y. L. (2013). Utilization of ultra-high performance fibre concrete (UHPFC) for rehabilitation- A review. Procedia Engineering, 54, 525–538. https://doi. org/10.1016/j.proeng.2013.03.048
Van Tuan, N., Ye, G., van Breugel, K., Fraaij, A. L. A., & Bui, D. D. (2011). The study of using rice husk ash to produce ultra high performance concrete. Construction and Building Materials, 25(4), 2030–2035. https://doi.org/10.1016/j.conbuildmat.2010.11.046
Vasconez, R. M., Naaman, A. E., & Wight, J. K. (1998). Behavior of HPFRC connections for precast concrete frames under reversed cyclic loading. PCI Journal, 43(6), 58–71. https://doi.org/10.15554/pcij.11011998. 58.71
Vega Vargas, C. J. (2015). Comportamiento dinamico de muros de mamposterıa no estructural reforzados mediante polımeros reforzados con fibra de carbono. CFRP, Escuela Colombiana de Ingenierıa Julio Garavito.
Wille, K., El-Tawil, S., & Naaman, A. E. (2014). Properties of strain hardening ultra high performance fiber reinforced concrete (UHP-FRC ) under direct tensile loading. Cement and Concrete Composites, 48, 53–66. https://doi.org/10.1016/j.cemconcomp.2013.12.015
Wille, K., Kim, D., & Naaman, A. E. (2011). Strain hardening UHP-FRC with low fiber contents. Materials and Structures 44, 538–598. https://doi.org/10.1617/s11527-010-9650-4
Yokota, H., Rokugo, K., & Sakata, N. (2008). JSCE-2008 Recommendations for design and construction of high performance fiber reinforced cement composites with multiple fine cracks (HPFRCC). Japan Society of Civil Engineers. https://doi.org/10.1016/j.dci.2010.01.003.
Yoo, D. Y., & Kim, M. J. (2019). High energy absorbent ultra-high-performance concrete with hybrid steel and polyethylene fibers. Construction and Building Materials, 209, 354–363. https://doi.org/10.1016/j.conbuildmat.2019.03.096
Yu, R., Spiesz, P., & Brouwers, H. J. H. (2015). Development of ultra-high performance fibre reinforced concrete (UHPFRC): Towards an efficient utilization of binders and fibres. Construction and Building Materials, 79, 273–282. https://doi.org/10.1016/j.conbuildmat.2015.01.050
Zhang, J., Zhao, Y., & Li, H. (2017). Experimental investigation and prediction of compressive strength of ultra-high performance concrete (UHPC) containing supplementary cementitious materials, Hindawi. Advances in Materials Science and Engineering, 2017,1–525. https://doi.org/10.1155/2017/4563164
Zhang, J., Zhao, Y., & Li, H. (2017). Experimental investigation and prediction of compressive strength of ultra-high performance concrete containing supplementary cementitious materials. Advances in Materials Science and Engineering, 2017, 4563164. https://doi.org/10.1155/2017/4563164