Publication: Semi-Remote Gait Assistance Interface: A Joystick with Visual Feedback Capabilities for Therapists
Authors
Abstract (Spanish)
Abstract (English)
Extent
Collections
Collections
References
National Health Service UK. Physiotherapy; National Health Service UK: England, UK, 2018.
Carrera, I.; Moreno, H.A.; Sierra M., S.D.; Campos, A.; Múnera, M.; Cifuentes, C.A. Technologies for Therapy and Assistance of Lower Limb Disabilities: Sit to Stand and Walking. In Exoskeleton Robots for Rehabilitation and Healthcare Devices; Springer: Berlin/Heidelberg, Germany, 2020; Chapter 4, pp. 43–66. [CrossRef]
Carr, J.H.; Shepherd, R.B. Stroke Rehabilitation-Guidelines for Exercise and Training to Optimize Motor Skill, 1st ed.; ButterworthHeinemann: Oxford, UK, 2003.
States, R.A.; Pappas, E.; Salem, Y. Overground physical therapy gait training for chronic stroke patients with mobility deficits. Cochrane Database Syst. Rev. 2009. [CrossRef] [PubMed]
Pollock, A.; Baer, G.; Campbell, P.; Choo, P.L.; Forster, A.; Morris, J.; Pomeroy, V.M.; Langhorne, P. Physical rehabilitation approaches for the recovery of function and mobility following stroke. Cochrane Database Syst. Rev. 2014. [CrossRef] [PubMed]
Sierra M., S.D.; Garzón, M.; Múnera, M.; Cifuentes, C.A. Human–Robot–Environment Interaction Interface for Smart Walker Assisted Gait: AGoRA Walker. Sensors 2019, 19, 2897. [CrossRef] [PubMed]
Morone, G.; Paolucci, S.; Cherubini, A.; De Angelis, D.; Venturiero, V.; Coiro, P.; Iosa, M. Robot-assisted gait training for stroke patients: Current state of the art and perspectives of robotics. Neuropsychiatr. Dis. Treat. 2017, 13, 1303–1311. [CrossRef] [PubMed]
Mikolajczyk, T.; Ciobanu, I.; Badea, D.I.; Iliescu, A.; Pizzamiglio, S.; Schauer, T.; Seel, T.; Seiciu, P.L.; Turner, D.L.; Berteanu, M. Advanced technology for gait rehabilitation: An overview. Adv. Mech. Eng. 2018, 10, 1–19. [CrossRef]
Chaparro-Cárdenas, S.L.; Lozano-Guzmán, A.A.; Ramirez-Bautista, J.A.; Hernández-Zavala, A. A review in gait rehabilitation devices and applied control techniques. Disabil. Rehabil. Assist. Technol. 2018, 13, 1–15. [CrossRef]
Belda-Lois, J.M.; Horno, S.M.d.; Bermejo-Bosch, I.; Moreno, J.C.; Pons, J.L.; Farina, D.; Iosa, M.; Molinari, M.; Tamburella, F.; Ramos, A.; et al. Rehabilitation of gait after stroke: A review towards a top-down approach. J. Neuroeng. Rehabil. 2011, 8, 66. [CrossRef]
Martins, M.; Frizera-Neto, A.; Santos, C.P.; Ceres, R. Review and Classification of Human Gait Training and Rehabilitation Devices; Assistive Technology Research Series; IOS Press Ebook: Amsterdam, The Netherlands, 2011; Chapter Everyday T, pp. 774–781. [CrossRef]
Martins, M.M.; Santos, C.P.; Frizera-Neto, A.; Ceres, R. Assistive mobility devices focusing on Smart Walkers: Classification and review. Robot. Auton. Syst. 2012, 60, 548–562. [CrossRef]
Sierra, S.; Arciniegas, L.; Ballen-Moreno, F.; Gomez-Vargas, D.; Munera, M.; Cifuentes, C.A. Adaptable Robotic Platform for Gait Rehabilitation and Assistance: Design Concepts and Applications. In Exoskeleton Robots for Rehabilitation and Healthcare Devices; Springer: Berlin/Heidelberg, Germany, 2020; pp. 67–93. [CrossRef]
Constantinescu, R.; Leonard, C.; Deeley, C.; Kurlan, R. Assistive devices for gait in Parkinson’s disease. Park. Relat. Disord. 2007, 13, 133–138. [CrossRef
Cifuentes, C.A.; Frizera, A. Human-Robot Interaction Strategies for Walker-Assisted Locomotion; Springer Tracts in Advanced Robotics; Springer: Cham, Switzerland, 2016; Volume 115, p. 105. [CrossRef]
Martins, M.; Santos, C.; Frizera, A.; Ceres, R. A review of the functionalities of smart walkers. Med. Eng. Phys. 2015, 37, 917–928. [CrossRef] [PubMed]
Belas Dos Santos, M.; Barros de Oliveira, C.; Dos Santos, A.; Garabello Pires, C.; Dylewski, V.; Arida, R.M. A Comparative Study of Conventional Physiotherapy versus Robot-Assisted Gait Training Associated to Physiotherapy in Individuals with Ataxia after Stroke. Behav. Neurol. 2018, 2018, 2892065. [CrossRef]
Mehrholz, J.; Elsner, B.; Werner, C.; Kugler, J.; Pohl, M. Electromechanical-assisted training for walking after stroke. In Cochrane Database of Systematic Reviews; Mehrholz, J., Ed.; John Wiley & Sons, Ltd.: Chichester, UK, 2013; doi:10.1002/14651858.CD006185.pub3. [CrossRef]
Dundar, U.; Toktas, H.; Solak, O.; Ulasli, A.M.; Eroglu, S. A Comparative Study of Conventional Physiotherapy Versus Robotic Training Combined with Physiotherapy in Patients with Stroke. Top. Stroke Rehabil. 2014, 21, 453–461. [CrossRef] [PubMed]
Dijkstra, A. Care Dependency. In Dementia in Nursing Homes; Springer: Cham, Switzerland, 2017; pp. 229–248. [CrossRef]
Sathian, K.; Buxbaum, L.J.; Cohen, L.G.; Krakauer, J.W.; Lang, C.E.; Corbetta, M.; Fitzpatrick, S.M. Neurological Principles and Rehabilitation of Action Disorders. Neurorehabilit. Neural Repair 2011, 25, 21S–32S. [CrossRef] [PubMed]
Iosa, M.; Morone, G.; Cherubini, A.; Paolucci, S. The Three Laws of Neurorobotics: A Review on What Neurorehabilitation Robots Should Do for Patients and Clinicians. J. Med. Biol. Eng. 2016, 36, 1–11. [CrossRef]
Aycardi, L.F.; Cifuentes, C.A.; Múnera, M.; Bayón, C.; Ramírez, O.; Lerma, S.; Frizera, A.; Rocon, E. Evaluation of biomechanical gait parameters of patients with Cerebral Palsy at three different levels of gait assistance using the CPWalker. J. Neuroeng. Rehabil. 2019, 16, 15. [CrossRef]
Sierra M., S.D.; Jimenez, M.F.; Munera, M.C.; Bastos, T.; Frizera-Neto, A.; Cifuentes, C.A. A Therapist Helping Hand for Walker-Assisted Gait Rehabilitation: A Pre-Clinical Assessment. In Proceedings of the 2019 IEEE 4th Colombian Conference on Automatic Control (CCAC), Medellin, Colombia, 15–18 October 2019; pp. 1–6. [CrossRef]
Opiyo, S.; Zhou, J.; Mwangi, E.; Kai, W.; Sunusi, I. A Review on Teleoperation of Mobile Ground Robots: Architecture and Situation Awareness. Int. J. Control. Autom. Syst. 2020, 19, 1384–1407. [CrossRef]
Rognon, C.; Mintchev, S.; Dell’Agnola, F.; Cherpillod, A.; Atienza, D.; Floreano, D. Flyjacket: An upper body soft exoskeleton for immersive drone control. IEEE Robot. Autom. Lett. 2018, 3, 2362–2369. [CrossRef]
Hou, X. Haptic teleoperation of a multirotor aerial robot using path planning with human intention estimation. Intell. Serv. Robot. 2020, 14, 33–46. [CrossRef]
Jablonowski, M. Beyond drone vision: The embodied telepresence of first-person-view drone flight. Senses Soc. 2020, 15, 344–358. [CrossRef]
Kumar, A.; Sharma, K.; Singh, H.; Naugriya, S.G.; Gill, S.S.; Buyya, R. A drone-based networked system and methods for combating coronavirus disease (COVID-19) pandemic. Future Gener. Comput. Syst. 2021, 115, 1–19. [CrossRef] [PubMed]
Butner, S.E.; Ghodoussi, M. Transforming a surgical robot for human telesurgery. IEEE Trans. Robot. Autom. 2003, 19, 818–824. [CrossRef]
Ghodoussi, M.; Butner, S.E.; Wang, Y. Robotic surgery-the transatlantic case. In Proceedings of the 2002 IEEE International Conference on Robotics and Automation (Cat. No. 02CH37292), Washington, DC, USA, 11–15 May 2002; Volume 2, pp. 1882–1888
Diolaiti, N.; Melchiorri, C. Teleoperation of a mobile robot through haptic feedback. In Proceedings of the IEEE International Workshop HAVE Haptic Virtual Environments and Their, Ottawa, ON, Canada, 17–18 November 2002; pp. 67–72.
Solanes, J.E.; Muñoz, A.; Gracia, L.; Martí, A.; Girbés-Juan, V.; Tornero, J. Teleoperation of industrial robot manipulators based on augmented reality. Int. J. Adv. Manuf. Technol. 2020, 111, 1077–1097. [CrossRef]
Lv, H.; Yang, G.; Zhou, H.; Huang, X.; Yang, H.; Pang, Z. Teleoperation of Collaborative Robot for Remote Dementia Care in Home Environments. IEEE J. Transl. Eng. Health Med. 2020, 8, 2168–2372. [CrossRef] [PubMed]
Han, J.; Cho, K.; Jang, I.; Ju, C.; Son, H.I.; Yang, G.H. Development of a shared controller for obstacle avoidance in a teleoperation system. Int. J. Control. Autom. Syst. 2020, 18, 2974–2982. [CrossRef]
Vo, C.P.; To, X.D.; Ahn, K.K. A Novel Force Sensorless Reflecting Control for Bilateral Haptic Teleoperation System. IEEE Access 2020, 8, 96515–96527. [CrossRef]
Eck, U.; Pankratz, F.; Sandor, C.; Klinker, G.; Laga, H. Precise haptic device co-location for visuo-haptic augmented reality. IEEE Trans. Vis. Comput. Graph. 2015, 21, 1427–1441. [CrossRef] [PubMed]
Silva, Y.M.L.R.; Simões, W.C.S.S.; Naves, E.L.M.; Bastos Filho, T.F.; De Lucena, V.F. Teleoperation training environment for new users of electric powered wheelchairs based on multiple driving methods. IEEE Access 2018, 6, 55099–55111. [CrossRef]
Ogata, Y.; Katsumura, M.; Yano, K.; Nakao, T.; Hamada, A.; Torii, K. Joystick Grip for Electric Wheelchair for Tension-AthetosisType Cerebral Palsy. In Proceedings of the 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 23–27 July 2019; pp. 1666–1669
Narayanan, V.K.; Spalanzani, A.; Babel, M. A semi-autonomous framework for human-aware and user intention driven wheelchair mobility assistance. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea, 9–14 October 2016; pp. 4700–4707.
Wada, M.; Kameda, F. A joystick car drive system with seating in a wheelchair. In Proceedings of the 2009 35th Annual Conference of IEEE Industrial Electronics, Porto, Portugal, 3–5 November 2009; pp. 2163–2168.
Silva, Y.; Simöes, W.; Teófilo, M.; Naves, E.; Lucena, V. Training environment for electric powered wheelchairs using teleoperation through a head mounted display. In Proceedings of the 2018 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 12–14 January 2018; pp. 1–2.
Ikeda, H.; Toyama, T.; Maki, D.; Sato, K.; Nakano, E. Cooperative step-climbing strategy using an autonomous wheelchair and a robot. Robot. Auton. Syst. 2021, 135, 103670. [CrossRef]
Schettino, V.; Demiris, Y. Inference of user-intention in remote robot wheelchair assistance using multimodal interfaces. In Proceedings of the 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China, 3–8 November 2019; pp. 4600–4606.
Shen, J.; Xu, B.; Pei, M.; Jia, Y. A low-cost tele-presence wheelchair system. In Proceedings of the 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Daejeon, Korea, 9–14 October 2016; pp. 2452–2457
Van der Loos, H.M.; Reinkensmeyer, D.J.; Guglielmelli, E. Rehabilitation and health care robotics. In Springer Handbook of Robotics; Springer: Berlin/Heidelberg, Germany, 2016; pp. 1685–1728.
Ajoudani, A.; Zanchettin, A.M.; Ivaldi, S.; Albu-Schäffer, A.; Kosuge, K.; Khatib, O. Progress and prospects of the human–robot collaboration. Auton. Robot. 2018, 42, 957–975. [CrossRef]
Cherubini, A.; Passama, R.; Crosnier, A.; Lasnier, A.; Fraisse, P. Collaborative manufacturing with physical human–robot interaction. Robot. Comput. Integr. Manuf. 2016, 40, 1–13. [CrossRef]
Roveda, L.; Maskani, J.; Franceschi, P.; Abdi, A.; Braghin, F.; Tosatti, L.M.; Pedrocchi, N. Model-based reinforcement learning variable impedance control for human-robot collaboration. J. Intell. Robot. Syst. 2020, 100, 417–433. [CrossRef]
Islam, S.; Liu, P.X.; El Saddik, A.; Ashour, R.; Dias, J.; Seneviratne, L.D. Artificial and virtual impedance interaction force reflection-based bilateral shared control for miniature unmanned aerial vehicle. IEEE Trans. Ind. Electron. 2018, 66, 329–337. [CrossRef]
Zhang, Z.; Chen, Y.; Zhang, D.; Xie, J.; Liu, M. A six-dimensional traction force sensor used for human-robot collaboration. Mechatronics 2019, 57, 164–172. [CrossRef]
Deng, X.; Yu, Z.L.; Lin, C.; Gu, Z.; Li, Y. A bayesian shared control approach for wheelchair robot with brain machine interface. IEEE Trans. Neural Syst. Rehabil. Eng. 2019, 28, 328–338. [CrossRef]
Li, Z.; Zhao, S.; Duan, J.; Su, C.Y.; Yang, C.; Zhao, X. Human cooperative wheelchair with brain–machine interaction based on shared control strategy. IEEE/ASME Trans. Mechatron. 2016, 22, 185–195. [CrossRef]
Luo, J.; Lin, Z.; Li, Y.; Yang, C. A teleoperation framework for mobile robots based on shared control. IEEE Robot. Autom. Lett. 2019, 5, 377–384. [CrossRef]
Palopoli, L.; Argyros, A.; Birchbauer, J.; Colombo, A.; Fontanelli, D.; Legay, A.; Garulli, A.; Giannitrapani, A.; Macii, D.; Moro, F.; others. Navigation assistance and guidance of older adults across complex public spaces: The DALi approach. Intell. Serv. Robot. 2015, 8, 77–92. [CrossRef]
Lacey, G.J.; Rodriguez-Losada, D. The evolution of guido. IEEE Robot. Autom. Mag. 2008, 15, 75–83. [CrossRef]
Efthimiou, E.; Fotinea, S.E.; Goulas, T.; Koutsombogera, M.; Karioris, P.; Vacalopoulou, A.; Rodomagoulakis, I.; Maragos, P.; Tzafestas, C.; Pitsikalis, V.; et al. The MOBOT rollator human-robot interaction model and user evaluation process. In Proceedings of the 2016 IEEE Symposium Series on Computational Intelligence (SSCI), Athens, Greece, 6–9 December 2016; pp. 1–8.
Garrote, L.; Paulo, J.; Perdiz, J.; Peixoto, P.; Nunes, U.J. Robot-assisted navigation for a robotic walker with aided user intent. In Proceedings of the 2018 27th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), Nanjing, China, 27–31 August 2018; pp. 348–355.
Jiménez, M.F.; Monllor, M.; Frizera, A.; Bastos, T.; Roberti, F.; Carelli, R. Admittance controller with spatial modulation for assisted locomotion using a smart walker. J. Intell. Robot. Syst. 2019, 94, 621–637. [CrossRef]
Ferrari, F.; Divan, S.; Guerrero, C.; Zenatti, F.; Guidolin, R.; Palopoli, L.; Fontanelli, D. Human–robot interaction analysis for a smart walker for elderly: The ACANTO interactive guidance system. Int. J. Soc. Robot. 2020, 12, 479–492. [CrossRef]
Jiménez, M.F.; Mello, R.C.; Bastos, T.; Frizera, A. Assistive Locomotion Device with Haptic Feedback For Guiding Visually Impaired People. Med. Eng. Phys. 2020. [CrossRef] [PubMed]
Andaluz, V.H.; Roberti, F.; Toibero, J.M.; Carelli, R.; Wagner, B. Adaptive dynamic path following control of an unicycle-like mobile robot. In Proceedings of the International Conference on Intelligent Robotics and Applications, Aachen, Germany, 6–8 December 2011; pp. 563–574
Frizera Neto, A.; Gallego, J.A.; Rocon, E.; Pons, J.L.; Ceres, R. Extraction of user’s navigation commands from upper body force interaction in walker assisted gait. Biomed. Eng. Online 2010, 9, 1–16. [CrossRef] [PubMed]
Venkatesh, V.; Thong, J.Y.; Xu, X. Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Q. 2012, 36, 157–178. [CrossRef]
Blair, R.C.; Higgins, J.J. A comparison of the power of Wilcoxon’s rank-sum statistic to that of student’s t statistic under various nonnormal distributions. J. Educ. Stat. 1980, 5, 309–335. [CrossRef]
de Winter, J.; Dodou, D. Five-Point Likert Items: T test versus Mann-Whitney-Wilcoxon (Addendum added October 2012). Pract. Assess. Res. Eval. 2010, 15, 11.
Zagermann, J.; Pfeil, U.; Reiterer, H. Measuring cognitive load using eye tracking technology in visual computing. In Proceedings of the Sixth Workshop on Beyond Time and Errors on Novel Evaluation Methods for Visualization, Baltimore, MD, USA, 24 October 2016; pp. 78–85.
Oviatt, S. Human-centered design meets cognitive load theory: Designing interfaces that help people think. In Proceedings of the 14th ACM international conference on Multimedia, Santa Barbara, CA, USA, 23–27 October 2006; pp. 871–880.
Hollender, N.; Hofmann, C.; Deneke, M.; Schmitz, B. Integrating cognitive load theory and concepts of human–computer interaction. Comput. Hum. Behav. 2010, 26, 1278–1288. [CrossRef]
Emami, Z.; Chau, T. The effects of visual distractors on cognitive load in a motor imagery brain-computer interface. Behav. Brain Res. 2020, 378, 112240. [CrossRef]
Chen, I.Y.H.; MacDonald, B.; Wunsche, B. Mixed reality simulation for mobile robots. In Proceedings of the 2009 IEEE International Conference on Robotics and Automation, Kobe, Japan, 12–17 May 2009; pp. 232–237.
Miglino, O.; Lund, H.H.; Nolfi, S. Evolving mobile robots in simulated and real environments. Artif. Life 1995, 2, 417–434. [CrossRef]
Yoon, H.U.; Wang, R.F.; Hutchinson, S.A.; Hur, P. Customizing haptic and visual feedback for assistive human–robot interface and the effects on performance improvement. Robot. Auton. Syst. 2017, 91, 258–269. [CrossRef]
Mo, Y.; Song, A.; Qin, H. Analysis and Performance Evaluation of a 3-DOF Wearable Fingertip Device for Haptic Applications. IEEE Access 2019, 7, 170430–170441. [CrossRef]
Pons, J.L. Wearable Robots: Biomechatronic Exoskeletons; John Wiley & Sons: Hoboken, NJ, USA, 2008.
Frizera-Neto, A.; Ceres, R.; Rocon, E.; Pons, J.L. Empowering and assisting natural human mobility: The simbiosis walker. Int. J. Adv. Robot. Syst. 2011, 8, 29. [CrossRef]
Yang, X.; Agrawal, A.; Sreenath, K.; Michael, N. Online adaptive teleoperation via motion primitives for mobile robots. Auton. Robot. 2019, 43, 1357–1373. [CrossRef]