Publication: An innovative magnetic oxide dispersion-strengthened iron compound obtained from an industrial byproduct, with a view to circular economy
Authors
Abstract (Spanish)
Abstract (English)
Extent
Collections
References
Amano, T., Okazaki, M., Takezawa, Y., Shiino, A., Takeda, M., Onishi, T., Seto, K., Ohkubo, A., Shishido, T., 2006. Hardness of oxide scales on Fe-Si alloys at room and high temperatures. Mater. Sci. Forum 522e523, 469e476. https://doi.org/ 10.4028/www.scientific.net/MSF.522-523.469.
Azevedo, J.M.C., Serrenho, A.C., Allwood, J.M., 2018. Energy and material efficiency of steel powder metallurgy. Powder Technol. 328, 329e336. https://doi.org/ 10.1016/j.powtec.2018.01.009.
Azevedo, J.M.C., Serrenho, A.C., Allwood, J.M., 2018. Energy and material efficiency of steel powder metallurgy. Powder Technol. 328, 329e336. https://doi.org/ 10.1016/j.powtec.2018.01.009.
Barde, A.A., Klausner, J.F., Renwei, M., 2016. Solid state reaction kinetics of iron oxide reduction using hydrogen as a reducing agent. Int. J. Hydrogen Energy 41, 10103e101019. https://doi.org/10.1016/j.ijhydene.2015.12.129.
Birks, N., Meier, G.H., Pettit, F.S., 2006. Introduction to High Temperature Oxidation of Metals, second ed. Cambridge University Press, Cambridge.
Bocchini, G.F., 1983. Energy requirements of structural components: powder metallurgy v. other production processes. Powder Metall. 26, 101e113. https:// doi.org/10.1179/pom.1983.26.2.101
Bonalde, A., Henriquez, A., Manrique, M., 2005. Kinetics analysis of the iron oxide reduction using hydrogen-carbon monoxide mixtures as reducing agent. ISIJ Int. 45, 1255e1260. https://doi.org/10.2355/isijinternational.45.1255
Cardarelli, F., 2008. Ferrous metals and their alloys. In: Cardarelli, F. (Ed.), Materials Handbook: A Concise Desktop Reference. Springer London, London, pp. 59e157. https://doi.org/10.1007/978-1-84628-669-8.
Chikazumi, S., Graham, C.D., 2009. Physics of Ferromagnetism, second ed. Oxford University Press, Oxford.
Chung, D.D.L., 2003. Composite materials for magnetic applications. In: Chung, D.D.L. (Ed.), Composite Materials. Engineering Materials and Processes. Springer, London, pp. 191e212.
El-Geassy, A.A., Nasr, M.I., Hessien, M.M., 1996. Effect of reducing gas on the volume change during reduction of iron oxide compacts. ISIJ Int. 36, 640e649. https:// doi.org/10.2355/isijinternational.36.640.
Esguerra, A., Barona, W., 2010. Cinetica de reducci on de una cascarilla de oxido de hierro con mezcla gaseosa CO-H2, IBEROMET XI - X CONAMET/SAM, Vina del ~ Mar, Chile. http://www.iberomet2010.260mb.com/pdfcongreso/t1/T1-5_ Esguerra_A_n1.pdf?i¼1.
Gardner, R.A., 1974. The kinetics of silica reduction in hydrogen. J. Solid State Chem. 9, 336e344. https://doi.org/10.1016/0022-4596(74)90092-9.
Ghosh, A., Mungole, M.N., Gupta, G., Tiwari, S., 1999. A preliminary study of influence of atmosphere on reduction behavior of iron ore-coal composite pellets. ISIJ Int. 39, 829e831. https://doi.org/10.2355/isijinternational.39.829.
Gomes Landgraf, F.J., Filipini da Silveira, J.R., Rodrigues Jr., D., 2011. Determining the effect of grain size and maximum induction upon coercive field of electrical steels. J. Magn. Magn Mater. 323, 2335e2339. https://doi.org/10.1016/ j.jmmm.2011.03.034.
Gudenau, H.W., Senk, D., Wang, S., De Melo Martins, K., Stephany, C., 2005. Research in the reduction of iron ore agglomerates including coal and C-containing dust. ISIJ Int. 45, 603e608. https://doi.org/10.2355/isijinternational.45.603.
Habermann, A., Winter, F., Hofbauer, H., Zirngast, J., Schenk, J.L., 2000. An experimental study on the kinetics of fluidized bed iron ore reduction. ISIJ Int. 40, 935e942. https://doi.org/10.2355/isijinternational.40.935
Herman, D.A.J., Ferguson, P., Cheong, S., Hermans, I.F., Ruck, B.J., Allan, K.M., Prabakar, S., Spencer, J.L., Lendrum, C.D., Tilley, R.D., 2011. Hot-injection synthesis of iron/iron oxide core/shell nanoparticles for T2 contrast enhancement in magnetic resonance imaging. Chem. Commun. (J. Chem. Soc. Sect. D) 32, 9221e9922. https://doi.org/10.1039/c1cc13416g.
Hou, B., Zhang, H., Li, H., Zhu, Q., 2012. Study on kinetics of iron oxide reduction by hydrogen. Chin. J. Chem. Eng. 20, 10e17. https://doi.org/10.1016/S1004-9541(12) 60357-7
Hurlbut Jr., C.S., Sharp, W.E., 1998. Dana’s Minerals and How to Study Them, fourth ed. John Wiley and Sons, New York.
Jean, M., Nachbaur, V., Le Breton, J.M., 2012. Synthesis and characterization of magnetite powders obtained by the solvothermal method: influence of the Fe3þ concentration. J. Alloys Compd. 513, 425e429. https://doi.org/10.1016/ j.jallcom.2011.10.064
Jiang, Z.Y., Tang, J., Sun, W., Tieu, A.K., Weia, D., 2010. Analysis of tribological feature of the oxide scale in hot strip rolling. Tribol. Int. 43, 1339e1345. https://doi.org/10.1016/j.triboint.2009.12.070.
, X., Wang, Q., Khan, W.Q., Li, Y.Q., Tang, ZhH., 2017. FeSiAl/(Ni0.5Zn0.5)Fe2O4 magnetic sheet composite with tunable electromagnetic properties for enhancing magnetic field coupling efficiency. J. Alloys Compd. 729, 277e284. https://doi.org/10.1016/j.jallcom.2017.09.088.
Kang, Seok Go, Sung, Real Son, Kim, Sang Done, 2008. Reaction kinetics of reduction and oxidation of metal oxides for hydrogen production. Int. J. Hydrogen Energy 33, 5986e5995. https://doi.org/10.1016/j.ijhydene.2008.05.039.
Kaufman, S.M., 1980. Energy consumption in the manufacture of precision metal parts from iron powder. SAE Technical Paper, 1980 Automot. Eng. Cong. Exposition. https://doi.org/10.4271/800303
Kazantseva, N.V., Stepanova, N.N., Rigmant, M.B., 2019. Superalloys: Analysis and Control of Failure Process, first ed. CRC Press, Cleveland.
Kruzhanov, V., Arnhold, V., 2012. Energy consumption in powder metallurgical manufacturing. Powder Metall. 55, 14e21. https://doi.org/10.1179/ 174329012X13318077875722
Maleki, A., Taherizadeh, A.R., Issa, H.K., Niroumand, B., Allafchian, A.R., Ghaei, A., 2018. Development of a new magnetic aluminum matrix nanocomposite. Ceram. Int. 44, 15079e15085. https://doi.org/10.1016/j.ceramint.2018.05.141.
Marinca, T.F., Chicinas¸ , H.F., Neamt¸ u, B.V., Popa, F., Chicinas¸ , I., 2017. Reactive spark plasma sintering of mechanically activated a-Fe2O3/Fe. Ceram. Int. 43, 14281e14291. https://doi.org/10.1016/j.ceramint.2017.07.180
Mill Scale Sourcing, 2018. http://millscale.org/ accessed November 2018
Molina, J.M., Louis, E., 2018. Interfacial design of Mg/graphite flakes-MP (MP¼Fe, Co or Ni) ferromagnetic composites with low density and high thermal conductivity. J. Alloys Compd. 767, 1155e1163. https://doi.org/10.1016/ j.jallcom.2018.07.136
Mondal, K., Lorethova, H., Hippo, E., Wiltowski, T., Lalvani, S.B., 2004. Reduction of iron oxide in carbon monoxide atmosphere-reaction controlled kinetics. Fuel Process. Technol. 86, 33e47. https://doi.org/10.1016/j.fuproc.2003.12.009
Ono-Nakazato, H., Sugahara, C., Usui, T., 2002. Effect of slag components on reducibility and melt formation of iron ore sinter. ISIJ Int. 42, 558e560. https:// doi.org/10.2355/isijinternational.42.558.
Ono-Nakazato, H., Okada, K., Usui, T., 2005. Effects of slag content and composition on the reducibility of iron oxide incluiding CaO-SiO2-FexO slag. ISIJ Int. 45, 569e573. https://doi.org/10.2355/isijinternational.45.569.
Parkinson, G.S., 2016. Iron oxide surfaces. Surf. Sci. Rep. 71, 272e365. https:// doi.org/10.1016/j.surfrep.2016.02.001
Piotrowski, K., Mondal, K., Lorethova, H., Stonawski, L., Szymanski, T., Wiltowski, T., 2005. Effect of gas composition on the kinetics of iron oxide reduction in a hydrogen production process. Int. J. Hydrogen Energy 30, 1543e1554. https:// doi.org/10.1016/j.ijhydene.2004.10.013.
Sasaki, Y., Bahgat, M., Iguchi, M., Ishii, K., 2005. The preferable growth direction of iron nuclei on wüstite surface during reduction. ISIJ Int. 45, 1077e1083. https:// doi.org/10.2355/isijinternational.45.1077.
Skinner, H.C.W., Jahren, A.H., 2003. Treatise on Geochemistry, first ed. Elsevier Science, Cambridge
Spuzic, S., Strafford, K.N., Subramanian, C., Savage, G., 1992. Wear of hot rolling mill rolls: an overview. Wear 176, 261e271. https://doi.org/10.1016/0043-1648(94) 90155-4.
Suri, S., Viswanathan, G.B., Neeraj, T., Hou, D.-H., Mills, M.J., 1999. Room temperature deformation and mechanisms of slip transmission in oriented single-colony crystals of an a/b titanium alloy. Acta Mater. 47, 1019e1034. https://doi.org/ 10.1016/S1359-6454(98)00364-4
Wagner, D., Devisme, O., Patisson, F., Ablitzer, D., 2006. A Laboratory Study of the Reduction of Iron Oxides by Hydrogen. Sohn International Symposium, San Diego, United States, pp. 111e120. https://hal.archives-ouvertes.fr/hal00265636.
Watanabe, Y., Takemura, S., Kashiwaya, Y., Ishii, K., 1996. Reduction of haematite to magnetite induced by hydrogen ion implantation. J. Phys. D Appl. Phys. 29 https://doi.org/10.1088/0022-3727/29/1/002.
Wetterskog, E., Tai, C.W., Grins, J., Bergstrom, L., Salazar-Alvarez, G., 2013. Anoma- € lous magnetic properties of nanoparticles arising from defect structures: topotaxial oxidation of Fe1exO|Fe3dO4 Core|Shell nanocubes to single-phase particles. ACS Nano 7, 7132e7144. https://doi.org/10.1021/nn402487q.
Zambrano, O.A., Coronado, J.J., Rodríguez, S.A., 2015. Mechanical properties and phases determination of low carbon steel oxide scales formed at 1200 C in air. Surf. Coating. Technol. 282, 155e162. https://doi.org/10.1016/ j.surfcoat.2015.10.028.
Zhang, Q., Zhang, W., Peng, K., 2019. In-situ synthesis and magnetic properties of core-shell structured Fe/Fe3O4 composites. J. Magn. Magn Mater. 484, 418e423. https://doi.org/10.1016/j.jmmm.2019.04.053.
Zherebtsov, S., Salishchev, G., Semiatin, S.L., 2010. Loss of coherency of the alpha/ beta interface boundary in titanium alloys during deformation. Phil. Mag. Lett. 90, 903e914. https://doi.org/10.1080/09500839.2010.521526.