Publication: Generating Random Variates via Kernel Density Estimation and Radial Basis Function Based Neural Networks
Abstract (Spanish)
Abstract (English)
Extent
Collections
References
Banks, J. (ed.): Handbook of Simulation: Principles, Methodology, Advances, Applications, and Practice, 1 edn. Wiley-Interscience, New York/Norcross (1998)
Krishnamoorthy, K.: Handbook of Statistical Distributions with Applications, 2nd edn. CRC Press, Boca Raton (2016)
Svensson, C., Hannaford, J., Prosdocimi, I.: Statistical distributions for monthly aggregations of precipitation and streamflow in drought indicator applications. Water Resour. Res. 53(2), 999–1018 (2017)
Gerber, M.S.: Predicting crime using Twitter and kernel density estimation. Decis. Support Syst. 61(Suppl. C), 115–125 (2014)
Zipkin, E.F., Leirness, J.B., Kinlan, B.P., O’Connell, A.F., Silverman, E.D.: Fitting statistical distributions to sea duck count data: implications for survey design and abundance estimation. Stat. Methodol. 17(Suppl. C), 67–81 (2014)
Berkson, J.: Some difficulties of interpretation encountered in the application of the chi-square test. J. Am. Stat. Assoc. 33(203), 526–536 (1938)
Massey, F.J.: The Kolmogorov-Smirnov test for goodness of fit. J. Am. Stat. Assoc. 46(253), 68–78 (1951)
Gutiérrez, M., Agustín, P., Gómez-Restrepo, C.: Beyond p value. Rev. Colomb. Psiquiatr. 38(3), 574–586 (2009)
Rosenblatt, M.: Remarks on some nonparametric estimates of a density function. Ann. Math. Stat. 27(3), 832–837 (1956)
Silverman, B.W.: Algorithm AS 176: kernel density estimation using the fast fourier transform. J. R. Stat. Soc. Ser. C Appl. Stat. 31(1), 93–99 (1982)
Heidenreich, N.-B., Schindler, A., Sperlich, S.: Bandwidth selection for kernel density estimation: a review of fully automatic selectors. AStA Adv. Stat. Anal. 97(4), 403–433 (2013)
Agarwal, R., Chen, Z., Sarma, S.V.: A novel nonparametric maximum likelihood estimator for probability density functions. IEEE Trans. Pattern Anal. Mach. Intell. 39(7), 1294–1308 (2017)
Padilla, O.H.M., Scott, J.G.: Nonparametric density estimation by histogram trend filtering. arXiv:150904348 Stat, September 2015
Xu, X., Yan, Z., Xu, S.: Estimating wind speed probability distribution by diffusion-based kernel density method. Electr. Power Syst. Res. 121, 28–37 (2015)
Arora, S., Taylor, J.W.: Forecasting electricity smart meter data using conditional kernel density estimation. Omega 59(Part A), 47–59 (2016)
Barabesi, L., Pratelli, L.: Universal methods for generating random variables with a given characteristic function. J. Stat. Comput. Simul. 85(8), 1679–1691 (2015)
Magdon-Ismail, M., Atiya, A.: Density estimation and random variate generation using multilayer networks. IEEE Trans. Neural Netw. 13(3), 497–520 (2002)
Alzaatreh, A., Lee, C., Famoye, F.: A new method for generating families of continuous distributions. METRON 71(1), 63–79 (2013)
Bringmann, K., Friedrich, T.: Exact and efficient generation of geometric random variates and random graphs. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.) ICALP 2013. LNCS, vol. 7965, pp. 267–278. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39206-1_23
Specht, D.F.: Probabilistic neural networks. Neural Netw. 3(1), 109–118 (1990)
Specht, D.F.: A general regression neural network. IEEE Trans. Neural Netw. 2(6), 568–576 (1991)
Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2012)