Publication: Evaluation of Physical Interaction during Walker-Assisted Gait with the AGoRA Walker: Strategies Based on Virtual Mechanical Stiffness
Abstract (English)
Extent
Collections
Collections
References
Decker, L.M.; Cignetti, F.; Stergiou, N. Complexity and Human Gait. Rev. Andal. Med. Deport. 2010, 3, 2–12
Vaughan, C.L. Theories of bipedal walking: An odyssey. J. Biomech. 2003, 36, 513–523. [CrossRef]
Buchman, A.S.; Boyle, P.A.; Leurgans, S.E.; Barnes, L.L.; Bennett, D.A. Cognitive Function is Associated with the Development of Mobility Impairments in Community-Dwelling Elders. Am. J. Geriatr Psychiatry 2011, 19, 571–580. [CrossRef] [PubMed]
World Bank Group. Disability Inclusion. 2019. Available online: https://www.worldbank.org/en/topic/disability (accessed on 17 February 2021)
Pirker, W.; Katzenschlager, R. Gait disorders in adults and the elderly. Wien. Klin. Wochenschr. 2017, 129, 81–95. [CrossRef]
Cifuentes, C.A.; Frizera, A. Human-Robot Interaction Strategies for Walker-Assisted Locomotion. In Springer Tracts in Advanced Robotics; Springer International Publishing: Cham, Switzerland; Berlin, Germany, 2016; Volume 115, p. 105. [CrossRef]
Khan, R.M. Mobility impairment in the elderly. InnovAiT Educ. Inspir. Gen. Pract. 2018, 11, 14–19. [CrossRef]
Mikolajczyk, T.; Ciobanu, I.; Badea, D.I.; Iliescu, A.; Pizzamiglio, S.; Schauer, T.; Seel, T.; Seiciu, P.L.; Turner, D.L.; Berteanu, M. Advanced technology for gait rehabilitation: An overview. Adv. Mech. Eng. 2018, 10, 1–19. [CrossRef]
Carrera, I.; Moreno, H.A.; Sierra M, S.D.; Campos, A.; Múnera, M.; Cifuentes, C.A. Technologies for Therapy and Assistance of Lower Limb Disabilities: Sit to Stand and Walking. In Exoskeleton Robots for Rehabilitation and Healthcare Devices; Springer: Berlin/Heidelberg, Germany, 2020; Chapter 4, pp. 43–66. [CrossRef]
Martins, M.M.; Santos, C.P.; Frizera-Neto, A.; Ceres, R. Assistive mobility devices focusing on Smart Walkers: Classification and review. Rob. Autom. Syst. 2012, 60, 548–562. [CrossRef]
Russell Esposito, E.; Schmidtbauer, K.A.; Wilken, J.M. Experimental comparisons of passive and powered ankle-foot orthoses in individuals with limb reconstruction. J. Neuroeng. Rehabil. 2018, 15, 111. [CrossRef]
Chaparro-Cárdenas, S.L.; Lozano-Guzmán, A.A.; Ramirez-Bautista, J.A.; Hernández-Zavala, A. A review in gait rehabilitation devices and applied control techniques. Disabil. Rehabil. Assist. Technol. 2018, 13, 819–834. [CrossRef] [PubMed]
Sierra, M.S.D.; Arciniegas, L.; Ballen-Moreno, F.; Gómez-Vargas, D.; Múnera, M.; Cifuentes, C.A. Adaptable Robotic Platform for Gait Rehabilitation and Assistance: Design Concepts and Applications. In Exoskeleton Robots for Rehabilitation and Healthcare Devices; Springer: Berlin/Heidelberg, Germany, 2020; pp. 67–93. [CrossRef]
Mundt, M.; Batista, J.P.; Markert, B.; Bollheimer, C.; Laurentius, T. Walking with rollator: A systematic review of gait parameters in older persons. Eur. Rev. Aging Phys. Act. 2019, 16, 15. [CrossRef]
Van der Loos, H.M.; Reinkensmeyer, D.J.; Guglielmelli, E. Rehabilitation and Health Care Robotics. In Springer Handbook of Robotics; Springer International Publishing: Cham, Switzerland; New York City, NY, USA, 2016; Chapter 64, pp. 1685–1728. [CrossRef]
Cardona, M.; Solanki, V.K.; García Cena, C.E. Exoskeleton Robots for Rehabilitation and Healthcare Devices; SpringerBriefs in Applied Sciences and Technology; Springer: Singapore, 2020. [CrossRef]
Belda-Lois, J.M.; Horno, S.M.D.; Bermejo-Bosch, I.; Moreno, J.C.; Pons, J.L.; Farina, D.; Iosa, M.; Molinari, M.; Tamburella, F.; Ramos, A.; et al. Rehabilitation of gait after stroke: A review towards a top-down approach. J. Neuroeng. Rehabilitat. 2011, 8, 66. [CrossRef]
Sheffler, L.R.; Chae, J. Technological Advances in Interventions to Enhance Poststroke Gait. Phys. Med. Rehabil. Clin. N. Am. 2013, 24, 305–323. [CrossRef] [PubMed]
Sierra M, S.D.; Garzón, M.; Múnera, M.; Cifuentes, C.A. Human–Robot–Environment Interaction Interface for Smart Walker Assisted Gait: AGoRA Walker. Sensors 2019, 19, 2897. [CrossRef] [PubMed]
Martins, M.; Santos, C.; Frizera, A.; Ceres, R. A review of the functionalities of smart walkers. Med. Eng. Phys. 2015, 37, 917–928. [CrossRef] [PubMed]
Scheidegger, W.M.; de Mello, R.C.; Sierra M, S.D.; Jimenez, M.F.; Munera, M.C.; Cifuentes, C.A.; Frizera-Neto, A. A Novel Multimodal Cognitive Interaction for Walker-Assisted Rehabilitation Therapies. In Proceedings of the 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR), Toronto, ON, Canada, 24–28 June 2019; pp. 905–910. [CrossRef]
Page, S.; Saint-Bauzel, L.; Rumeau, P.; Pasqui, V. Smart walkers: An application-oriented review. Robotica 2017, 35, 1243–1262. [CrossRef]
Baker, R. Gait analysis methods in rehabilitation. J. Neuroeng. Rehabil. 2006, 3, 1–10. [CrossRef]
Nirenberg, M.; Vernon, W.; Birch, I. A review of the historical use and criticisms of gait analysis evidence. Sci. Justice 2018, 58, 292–298. [CrossRef]
Colyer, S.L.; Evans, M.; Cosker, D.P.; Salo, A.I.T. A Review of the Evolution of Vision-Based Motion Analysis and the Integration of Advanced Computer Vision Methods Towards Developing a Markerless System. Sports Med. Open 2018, 4, 24. [CrossRef]
Shahabpoor, E.; Pavic, A. Measurement of Walking Ground Reactions in Real-Life Environments: A Systematic Review of Techniques and Technologies. Sensors 2017, 17, 2085. [CrossRef]
Sprager, S.; Juric, M. Inertial Sensor-Based Gait Recognition: A Review. Sensors 2015, 15, 22089–22127. [CrossRef]
Alkjær, T.; Larsen, P.K.; Pedersen, G.; Nielsen, L.H.; Simonsen, E.B. Biomechanical analysis of rollator walking. Biomed. Eng. Online 2006, 5, 1–7. [CrossRef]
Wang, T.; Dune, C.; Merlet, J.P.; Gorce, P.; Sacco, G.; Robert, P.; Turpin, J.M.; Teboul, B.; Marteu, A.; Guerin, O. A new application of smart walker for quantitative analysis of human walking. In Proceedings of the 13th European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; doi:10.1007/978-3-319-16199-0_ 33. [CrossRef]
Jiménez, M.F.; Monllor, M.; Frizera, A.; Bastos, T.; Roberti, F.; Carelli, R. Admittance Controller with Spatial Modulation for Assisted Locomotion using a Smart Walker. J. Intell. Rob. Syst. 2019, 94, 621–637. [CrossRef]
Yeoh, W.L.; Choi, J.; Loh, P.Y.; Saito, S.; Muraki, S. The effect of horizontal forces from a Smart Walker on gait and perceived exertion. Assistive Technol. 2020, 1–9. [CrossRef] [PubMed]
Sato, W.; Tsuchida, Y.; Li, P.; Hasegawa, T.; Yamada, Y.; Uchiyama, Y. Identifying the Effects of Assistive and Resistive Guidance on the Gait of Elderly People Using a Smart Walker. In Proceedings of the 2019 IEEE 16th International Conference on Rehabilitation Robotics (ICORR), Toronto, ON, Canada, 24–28 June 2019; pp. 198–203. [CrossRef]
Weon, I.S.; Lee, S.G. Intelligent robotic walker with actively controlled human interaction. ETRI J. 2018, 40, 522–530. [CrossRef]
Aguirre, A.; Sierra M, S.D.; Munera, M.; Cifuentes, C.A. Online System for Gait Parameters Estimation Using a LRF Sensor for Assistive Devices. IEEE Sens. J. 2020. [CrossRef]
Brodie, M.A.D.; Beijer, T.R.; Canning, C.G.; Lord, S.R. Head and pelvis stride-to-stride oscillations in gait: Validation and interpretation of measurements from wearable accelerometers. Physiol. Meas. 2015, 36, 857–872. [CrossRef]
Frizera, A.; Gallego, J.; Rocon de Lima, E.; Abellanas, A.; Pons, J.; Ceres, R. Online Cadence Estimation through Force Interaction in Walker Assisted Gait. In Proceedings of the ISSNIP Biosignals and Biorobotics Conference 2010, Vitoria, Brazil, 4–6 January 2010; pp. 1–5.
Frizera Neto, A.; Gallego, J.A.; Rocon, E.; Pons, J.L.; Ceres, R. Extraction of user’s navigation commands from upper body force interaction in walker assisted gait. Biomed. Eng. Online 2010, 9, 1–16. [CrossRef]
Marsan, T.; Thoreux, P.; Bourgain, M.; Rouillon, O.; Rouch, P.; Sauret, C. Biomechanical analysis of the golf swing: Methodological effect of angular velocity component on the identification of the kinematic sequence. Acta Bioeng. Biomech. 2019, 21, 115–120. [CrossRef]
Vicon Motion Systems. NEXUS. 2020. Available online: https://www.vicon.com/software/nexus/ (accessed on 17 February 2021)
Field, T.; Leibs, J.; Bowman, J. ROS Documentation—Rosbag. 2020. Available online: http://docs.ros.org/en/hydro/api/rosbag /html/ (accessed on 17 February 2021)
Delp, S.L.; Anderson, F.C.; Arnold, A.S.; Loan, P.; Habib, A.; John, C.T.; Guendelman, E.; Thelen, D.G. OpenSim: Open-Source Software to Create and Analyze Dynamic Simulations of Movement. IEEE Trans. Biomed. Eng. 2007, 54, 1940–1950. [CrossRef]
MathWorks. MATLAB R2018a at a Glance. 2018. Available online: https://la.mathworks.com/products/new_products/release 2018a.html (accessed on 17 February 2021)
BTK Matlab Wrapper. Available online: http://biomechanical-toolkit.github.io/docs/Wrapping/Matlab/ (accessed on 22 October 2020).
RStudio. RStudio. 2020. Available online: https://rstudio.com/ (accessed on 17 February 2021)
Najafi, B.; Miller, D.; Jarrett, B.D.; Wrobel, J.S. Does footwear type impact the number of steps required to reach gait steady state? An innovative look at the impact of foot orthoses on gait initiation. Gait Posture 2010, 32, 29–33. [CrossRef] [PubMed]
Lee, M.; Kim, S.; Park, S. Resonance-based oscillations could describe human gait mechanics under various loading conditions. J. Biomech. 2014, 47, 319–322. [CrossRef] [PubMed]
Tang, A.; Cao, Q. Motion control of walking assistant robot based on comfort. Ind. Robot 2012, 39, 564–579. [CrossRef]
Graham, J.E.; Fisher, S.R.; Bergés, I.M.; Kuo, Y.F.; Ostir, G.V. Walking Speed Threshold for Classifying Walking Independence in Hospitalized Older Adults. Phys. Ther. 2010, 90, 1591–1597. [CrossRef] [PubMed]
Tudor-Locke, C.; Aguiar, E.J.; Han, H.; Ducharme, S.W.; Schuna, J.M.; Barreira, T.V.; Moore, C.C.; Busa, M.A.; Lim, J.; Sirard, J.R.; et al. Walking cadence (steps/min) and intensity in 21–40 year olds: CADENCE-adults. Int. J. Behav. Nutr. Phys. Act. 2019, 16, 8. [CrossRef]
Pervez, A.; Ryu, J. Safe physical human–robot interaction of mobility assistance robots: evaluation index and control. Robotica 2011, 29, 767–785. [CrossRef]
Lockhart, T.E.; Woldstad, J.C.; Smith, J.L. Effects of age-related gait changes on the biomechanics of slips and falls. Ergonomics 2003, 46, 1136–1160. [CrossRef]
Wert, D.M.; Brach, J.; Perera, S.; VanSwearingen, J.M. Gait Biomechanics, Spatial and Temporal Characteristics, and the Energy Cost of Walking in Older Adults With Impaired Mobility. Physical Therapy 2010, 90, 977–985. [CrossRef]
Nadeau, S.; Betschart, M.; Bethoux, F. Gait Analysis for Poststroke Rehabilitation. Phys. Med. Rehabil. Clin. N. Am. 2013, 24, 265–276. [CrossRef]
Aycardi, L.F.; Cifuentes, C.A.; Múnera, M.; Bayón, C.; Ramírez, O.; Lerma, S.; Frizera, A.; Rocon, E. Evaluation of biomechanical gait parameters of patients with Cerebral Palsy at three different levels of gait assistance using the CPWalker. J. Neuroeng. Rehabil. 2019, 16, 15. [CrossRef]
Manchola, M.D.S.; Mayag, L.J.A.; Munera, M.; Garcia, C.A.C. Impedance-based Backdrivability Recovery of a Lower-limb Exoskeleton for Knee Rehabilitation. In Proceedings of the 2019 IEEE 4th Colombian Conference on Automatic Control (CCAC), Medellin, Colombia, 15–18 October 2019; pp. 1–6. [CrossRef]
Viteckova, S.; Kutilek, P.; de Boisboissel, G.; Krupicka, R.; Galajdova, A.; Kauler, J.; Lhotska, L.; Szabo, Z. Empowering lower limbs exoskeletons: State-of-the-art. Robotica 2018, 36, 1743–1756. [CrossRef]