Publication: Diseño de un contenedor laminar de suelo para el estudio de la respuesta dinámica del suelos y la interacción suelo - estructura
Files
Authors
Authors
Abstract (Spanish)
Abstract (English)
Director
Advisors/Directors
Extent
Collections
References
ALARCÓN, E. (1989). Respuesta dinámica de suelos. E.T.S.I.I. Universidad Politécnica de Madrid. Física de la Tierra, Ed. Univ. Compl. Madrid, 309-356.
Bhattacharya S, D. L. (2012). Model Container Design for Soil-Structure Interaction Studies. En M. F. (eds.), Role of Seismic Testing Facilities in Performance-Based Earthquake Engineering: SERIES Workshop (págs. 135 - 158). Bristol, UK: Geotechnical, Geological and Earthquake Engineering 22, DOI 10.1007/978-94-007-1977-4_8, © Springer Science+Business Media B.V. 2012.
BHATTACHARYA, S. D. (2010). Kinematic bending moments in piles: an experimental study. Proceedings of the 7th international conference on urban earthquake engineering and 5th international conference on earthquake engineering, Tokyo.
Bojadjieva, J. e. (2022). Verification of a system for sustainable research on earthquake-induced soil liquefaction in 1-g environments. geosciences, 363.
Bolton, M. (1986). The strength and dilatancy of sands. Géotechnique, 65–78.
Chau, K. S. (2009). Nonlinear Seismic Soil-Pile-Structure Interactions: Shaking Table Tests and FEM Analyses. Soil Dynamics and Earthquake Engineering, vol. 29, no. 29, pp. 300-310.
CORAL H.A., R. J. (2010). Diseño, construcción y control de un simulador sísmico uniaxial teleteleoperable para modelos estructurales a pequeña escala. Ingenieria y competitividad, volumen 12, No. 2, 95 - 115.
Ecemis, N. (2013). Simulation of seismic liquefaction: 1-g model testing system and shaking table tests. European journal of environmental and civil engineering.
Gazetas, G. (1982). Vibrational Characteristics of Soil Deposits with Variable Wave Velocity. International Journal for Numerical and Analytical Methods in Geomechanics, vol. 6, no. 1, pp. 1-20.
HIGUCHI K., Y. K. (2000). Shaking table tests on the mechanism of liquefaction-induced ground flow behind quay walls.
Ishimura, K. O. (1992). Sway-rocking Model for Simulating Nonlinear Response of Sandy Deposit with Structure. Proceedings of the Tenth World Conference on Earthquake Engineering, 1897-1903.
Jakrapiyanun, W. (2002). Physical Modeling of Dynamics Soil-Foundation-Structure-Interaction Using a Laminar Container. San Diego, California: PhD Thesis.
Kramer, S. (1996). Geotechnical earthquake engineering. Prentice Hall, Upper Saddle River Leblanc C, Byrne BW, Houlsby GT (2010) Response of stiff piles to random two-way lateral loading. Géotechnique, 715–721
Leblanc C, B. B. (2010). Response of stiff piles to random two-way lateral loading. Géotechnique, 715–721.
M. DIETZ, W. M. (2008). Shaking table evaluation of dynamic soil properties. 4th International Conference on Earthquake Geotechnical Engineering. Paper No. 1196.
Meymand, P. (1998). Shaking Table Scale Model Tests of Nonlinear Soil-Pile-Superstructure Interaction in Soft Clay. Berkeley, California: PhD thesis in Civil Engineering, University of California.
Moss, R. C. (2010). Shake Table Testing to Quantify Seismic Soil-Structure Interaction of Underground Structures. Proceedings of the 5th International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, May 24-29, San Diego, Paper No. 1.27b.
MUTO, K. B. (1962). Special requirements for the design of nuclear power stations to withstand earthquakes. Nominated lecture to the Nuclear Power Group, Instn. Of Mech. Engrs.
Pitilakis, D. D. (2008). Numerical Simulation of Dynamic Soil-Structure Interaction in Shaking Table Testing. Soil Dynamics and Earthquake Engineering, vol. 28, pp. 453-467.
Riemer, M. G. (1998). Using Reflected Waves to Measure Small Strain Dynamic Properties. Proceedings of the 5th Caltrans Seismic Research Workshop, 16-18.
Sheshov, V. e. (2019). Physical modeling and 1-g testing using the new type of a laminar container. Goetechnical engineering foundation of the future.
Sulaeman, A. (2010). The Use of Lightweight Concrete Piles for Deep Foundation on Soft Soils. PhD thesis in Civil Engineering, University of Tun Hussein Onn, Malaysia.
Tabatabaiefar, H. F. (2014). Numerical and Experimental Investigations on Seismic Response of Building Frames under Influence of Soil-Structure Interaction. Advances in Structural Engineering, vol. 17, no. 1, pp. 109-130.
Taylor, C. (1997). Large Scale Shaking Tests of Geotechnical Structures. Earthquake Engineering Research.
Thevanayagam, S. e. (2009). Laminar box system for 1-g physical modeling of liquefaction and lateral spreading. Geotechnical testing journal.
Valsangkar, A. D. (1991). Shake Table Studies of Seismic Response of Single Partially Supported Piles. Proceeding of the 6th Canadian Conference Earthquake Engineering, 327-334.
ZEEVAERT, W. L. (1999). Importancia del módulo dinámico de rigidez del suelo en el análisis de los problemas de estabilidad por la acción de las ondas sísmicas.
Zeng, X., & Schofield, A. (1996). Design and performance of an equivalent-shear-beam container for earthquake centrifuge modelling. Geotechnique, 83–102.