Publication: Expectation vs. Reality: Attitudes Towards a Socially Assistive Robot in Cardiac Rehabilitation
Authors
Abstract (Spanish)
Abstract (English)
Extent
Collections
Collections
References
Okamura, A.M.; Mataric, M.J.; Christensen, H.I. Medical and Health-Care Robotics. IEEE Robot. Autom. Mag. 2010, 17, 26–37. [CrossRef]
Matari´c, M.J.; Eriksson, J.; Feil-Seifer, D.J.; Winstein, C.J. Socially assistive robotics for post-stroke rehabilitation. J. NeuroEng. Rehabil. 2007, 4, 5. [CrossRef] [PubMed]
Feil-Seifer, D.; Matari´c, M.J. Toward Socially Assistive Robotics for Augmenting Interventions for Children with Autism Spectrum Disorders. In Experimental Robotics; Khatib, O., Kumar, V., Pappas, G.J., Eds.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 201–210.
Rabbitt, S.M.; Kazdin, A.E.; Scassellati, B. Integrating socially assistive robotics into mental healthcare interventions: Applications and recommendations for expanded use. Clin. Psychol. Rev. 2015, 35, 35–46. [CrossRef] [PubMed]
Fridin, M.; Belokopytov, M. Acceptance of socially assistive humanoid robot by preschool and elementary school teachers. Comput. Hum. Behav. 2014, 33, 23–31. [CrossRef]
Casas, J.; Irfan, B.; Senft, E.; Gutiérrez, L.; Rincon-Roncancio, M.; Munera, M.; Belpaeme, T.; Cifuentes, C.A. Social Assistive Robot for Cardiac Rehabilitation: A Pilot Study with Patients with Angioplasty. In Proceedings of the Companion of the 2018 ACM/IEEE International Conference on Human–Robot Interaction, Chicago, IL, USA, 5–8 March 2018; ACM: New York, NY, USA, 2018; pp. 79–80. [CrossRef]
Gonzalez, J.C.; Pulido, J.C.; Fernandez, F.; Suarez-Mejias, C. Planning, execution and monitoring of physical rehabilitation therapies with a robotic architecture. Stud Health Technol. Inf. 2015, 210, 339–343.
Süssenbach, L.; Riether, N.; Schneider, S.; Berger, I.; Kummert, F.; Lütkebohle, I.; Pitsch, K. A robot as fitness companion: Towards an interactive action-based motivation model. In Proceedings of the 23rd IEEE International Symposium on Robot and Human Interactive Communication, Edinburgh, UK, 25–29 August 2014; pp. 286–293. [CrossRef]
Dc, W.; Gockley, R.; Bruce, A.; Forlizzi, J.; Michalowski, M.; Mundell, A.; Rosenthal, S.; Sellner, B.; Simmons, R.; Snipes, K.; et al. Designing Robots for Long-Term Social Interaction. In Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems, Edmonton, AB, Canada, 2–6 August 2005; pp. 2199–2204.
Riek, L.D. Healthcare Robotics. Commun. Acm 2017, 60, 68–78. [CrossRef]
Leite, I.; Martinho, C.; Paiva, A. Social Robots for Long-Term Interaction: A Survey. Int. J. Soc. Robot. 2013, 5, 291–308. [CrossRef]
de Graaf, M.M.; Allouch, S.B.; Klamer, T. Sharing a life with Harvey: Exploring the acceptance of and relationship-building with a social robot. Comput. Hum. Behav. 2015, 43, 1–14. [CrossRef]
Kidd, C.D.; Breazeal, C. Robots at home: Understanding long-term human–robot interaction. In Proceedings of the 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems, Nice, France, 22–26 September 2008; pp. 3230–3235. [CrossRef]
Kanda, T.; Hirano, T.; Eaton, D.; Ishiguro, H. Interactive Robots As Social Partners and Peer Tutors for Children: A Field Trial. Hum.-Comput. Interact. 2004, 19, 61–84. [CrossRef]
Feil-Seifer, D.; Matari´c, M.J. Defining socially assistive robotics. In Proceedings of the 2005 IEEE 9th International Conference on Rehabilitation Robotics, Chicago, IL, USA, 28 June–1 July 2005; pp. 465–468. [CrossRef]
Shin, D.H.; Choo, H. Modeling the acceptance of socially interactive robotics: Social presence in human–robot interaction. Interact. Stud. 2011, 12, 430–460. [CrossRef]
Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User Acceptance of Information Technology: Toward a Unified View. MIS Q. 2003, 27, 425. [CrossRef]
Heerink, M.; Kröse, B.; Evers, V.; Wielinga, B. Assessing Acceptance of Assistive Social Agent Technology byOlder Adults: The Almere Model. Int. J. Soc. Robot. 2010, 2, 361–375. [CrossRef]
World Heart Organization. Cardiovascular Disease. 2017. Available online: https://www.who.int/en/ news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed on 15 January 2019).
Lara, J.S.; Casas, J.; Aguirre, A.; Munera, M.; Rincon-Roncancio, M.; Irfan, B.; Senft, E.; Belpaeme, T.; Cifuentes, C.A. Human-robot sensor interface for cardiac rehabilitation. In Proceedings of the 2017 International Conference on Rehabilitation Robotics (ICORR), London, UK, 17–20 July 2017; pp. 1013–1018
Graham, I.M.; Fallon, N.; Ingram, S.; Leong, T.; Gormley, J.; O’Doherty, V.; Maher, V.; Benson, S.E. Rehabilitation of the Patient with Coronary Heart Disease. In Hurst’s The Heart, 13th ed.; Mc-Graw-Hill: New York, NY, USA, 2011; pp. 1–33.
Kraus, W.; Keteyian, S. Cardiac Rehabilitation; Humana Press: Totowa, NJ, USA, 2007
Scherr, J.; Wolfarth, B.; Christle, J.W.; Pressler, A.; Wagenpfeil, S.; Halle, M. Associations between Borg’s rating of perceived exertion and physiological measures of exercise intensity. Eur. J. Appl. Physiol. 2013, 113, 147–155. [CrossRef] [PubMed]
Siegert, R.J.; Taylor, W.J. Theoretical aspects of goal-setting and motivation in rehabilitation. Disabil. Rehabil. 2004, 26, 1–8. [CrossRef]
Maclean, N.; Pound, P. A critical review of the concept of patient motivation in the literature on physical rehabilitation. Soc. Sci. Med. 2000, 50, 495–506. [CrossRef]
Laver, K.; George, S.; Ratcliffe, J.; Crotty, M. Measuring technology self efficacy: Reliability and construct validity of a modified computer self efficacy scale in a clinical rehabilitation setting. Disabil. Rehabil. 2012, 34, 220–227. [CrossRef]
Davis, F.D.; Bagozzi, R.P.; Warshaw, P.R. User Acceptance of Computer Technology: A Comparison of Two Theoretical Models. Manag. Sci. 1989, 35, 982–1003. [CrossRef]
Schnall, R.; Higgins, T.; Brown, W.; Carballo-Dieguez, A.; Bakken, S. Trust, Perceived Risk, Perceived Ease of Use and Perceived Usefulness as Factors Related to mHealth Technology Use. Stud. Health Technol. Inform. 2015, 216, 467–471
Hennemann, S.; Beutel, M.E.; Zwerenz, R. Drivers and Barriers to Acceptance of Web-Based Aftercare of Patients in Inpatient Routine Care: A Cross-Sectional Survey. J. Med. Internet Res. 2016, 18, e337. [CrossRef]
Liu, L.; Cruz, A.M.; Rincon, A.R.; Buttar, V.; Ranson, Q.; Goertzen, D. What factors determine therapists’ acceptance of new technologies for rehabilitation—A study using the Unified Theory of Acceptance and Use of Technology (UTAUT). Disabil. Rehabil. 2015, 37, 447–455. [CrossRef]
Hatami Kaleshtari, M.; Ciobanu, I.; Lucian Seiciu, P.; Georgiana Marin, A.; Berteanu, M. Towards a Model of Rehabilitation Technology Acceptance and Usability. Int. J. Soc. Sci. Humanit. 2016, 6, 612–616. [CrossRef]
Griffiths, S.; Alpay, T.; Sutherland, A.; Kerzel, M.; Eppe, M.; Strahl, E.; Wermter, S. Exercise with Social Robots: Companion or Coach? In Proceedings of the Workshop on Personal Robots for Exercising and Coaching at the HRI 2018, Chicago, IL, USA, 5–8 March 2018
Schneider, S.; Goerlich, M.; Kummert, F. A framework for designing socially assistive robot interactions. Cogn. Syst. Res. 2017, 43, 301–312. [CrossRef]
de Ruyter, B.; Aarts, E. Ambient Intelligence: Visualizing the Future. In Proceedings of the Working Conference on Advanced Visual Interfaces, Venezia, Italy, 23–26 May 2004; ACM: New York, NY, USA, 2004; pp. 203–208. [CrossRef]
Weiss, A.; Bernhaupt, R.; Lankes, M.; Tscheligi, M. The USUS Evaluation Framework for Human–Robot Interaction. In Proceedings of the Symposium on New Frontiers in Human-Robot Interaction AISB2009, Edinburg, Scotland, 6–9 April 2009; pp. 158–165.
Heerink, M.; Kröse, B.; Wielinga, B.; Evers, V. Measuring the Influence of Social Abilities on Acceptance of an Interface Robot and a Screen Agent by Elderly Users. In Proceedings of the 23rd British HCI Group Annual Conference on People and Computers: Celebrating People and Technology, Cambridge, UK, 1–5 September 2009; British Computer Society: Swinton, UK, 2009; pp. 430–439.
Heerink, M.; Krose, B.; Evers, V.; Wielinga, B. Measuring acceptance of an assistive social robot: A suggested toolkit. In Proceedings of the 18th IEEE International Symposium on Robot and Human Interactive Communication, Toyama, Japan, 27 September–2 October 2009; pp. 528–533. [CrossRef]
Fink, J.; Lemaignan, S.; Dillenbourg, P.; Rétornaz, P.; Vaussard, F.C.; Berthoud, A.; Mondada, F.; Wille, F.; Franinovic, K. Which Robot Behavior Can Motivate Children to Tidy up Their Toys? Design and Evaluation of “Ranger”. In Proceedings of the 2014 ACM/IEEE International Conference on Human–Robot Interaction, Bielefeld, Germany, 3–6 March 2014; pp. 439–446.
Weiss, A.; Bernhaupt, R.; Tscheligi, M.; Wollherr, D.; Kühnlenz, K.; Buss, M. A methodological variation for acceptance evaluation of human–robot interaction in public places. In Proceedings of the 17th IEEE International Symposium on Robot and Human Interactive Communication, Munich, Germany, 1–3 August 2008; pp. 713–718. [CrossRef]
Bickmore, T.; Schulman, D. Practical Approaches to Comforting. In Proceedings of the ACM CHI 2007: Conference on Human Factors in Computing Systems, San Jose, CA, USA, 30 April–3 May 2007; pp. 2291–2296.
Louie, W.Y.G.; McColl, D.; Nejat, G. Acceptance and attitudes toward a human-like socially assistive robot by older adults. Assist. Technol. 2014, 26, 140–150. [CrossRef] [PubMed]
Winkle, K.; Caleb-Solly, P.; Turton, A.; Bremner, P. Social Robots for Engagement in Rehabilitative Therapies. 2018; In Proceedings of the ACM HR1 2018: Conference on Human-Robot Interaction, Chicago, IL, USA, 5–8 March 2018; pp. 289–297. [CrossRef]
Joost, C.F.; Dodou, D. Five-Point Likert Items: T test versus Mann–Whitney–Wilcoxon. Pract. Assess. Res. Eval. 2010, 15, 1–16.
Blair, R.C.; Higgins, J.J. A Comparison of the Power of Wilcoxon’s Rank-Sum Statistic to That of Student’s t Statistic under Various Nonnormal Distributions. J. Educ. Stat. 1980, 5, 309. [CrossRef]
Fink, J.; Bauwens, V.; Kaplan, F.; Dillenbourg, P. Living with a Vacuum Cleaning Robot: A 6-month Ethnographic Study. Int. J. Soc. Robot. 2013, 5, 389–408. [CrossRef]
Zajonc, R.B. Attitudinal effects of “mere exposure”: A reevaluation. J. Personal. Soc. Psychol. 1968, 9, 1–27. [CrossRef]
Kim, A.; Han, J.; Jung, Y.; Lee, K. The effects of familiarity and robot gesture on user acceptance of information. In Proceedings of the ACM/IEEE International Conference on Human–Robot Interaction, Tokyo, Japan, 3–6 March 2013; pp. 159–160. [CrossRef]
Jung, M.; Hinds, P. Robots in the Wild. ACM Trans. Hum.-Robot. Interact. 2018, 7, 1–5. [CrossRef]
Powers, A.; Kiesler, S.; Fussell, S.; Torrey, C. Comparing a computer agent with a humanoid robot. In Proceedings of the ACM/IEEE International Conference on Human–Robot Interaction, Arlington, VA, USA, 10–12 March 2007; ACM Press: New York, NY, USA, 2007; p. 145. [CrossRef]
Baddoura, R.; Venture, G. Social vs. Useful HRI: Experiencing the Familiar, Perceiving the Robot as a Sociable Partner and Responding to Its Actions. Int. J. Soc. Robot. 2013, 5, 529–547. [CrossRef]
Turkle, S. Alone Together: Why We Expect More from Technology and Less from Each Other, 1th ed.; Basic books: New York, NY, USA, 2011.