Publication: Estudio de resiliencia estructural en puentes de concreto después de sufrir cargas impulsivas en los apoyos intermedios.
Files
Authors
Abstract (Spanish)
Abstract (English)
Director
Advisors/Directors
Extent
Collections
References
[1] Agrawal, A. K., Liu, G., & Alampalli, S. (2013). Effects of truck impacts on bridge piers. Advanced Materials Research, 639–640(1), 13–25. https://doi.org/10.4028/www.scientific.net/AMR.639-640.13 [2] Li, R. W., Wu, H., Yang, Q. T., & Wang, D. F. (2020). Vehicular impact resistance of seismic designed RC bridge piers. Engineering Structures, 220(April). https://doi.org/10.1016/j.engstruct.2020.111015 [3] Gomez, N. L., & Alipour, A. (2014). Study of circular reinforced concrete bridge piers subjected to vehicular collisions. Structures Congress 2014 - Proceedings of the 2014 Structures Congress, 2003, 577–587. https://doi.org/10.1061/9780784413357.052 [4] Sharma, H., Hurlebaus, S., & Gardoni, P. (2012). Performance-based response evaluation of reinforced concrete columns subject to vehicle impact. International Journal of Impact Engineering, 43, 52–62. https://doi.org/10.1016/j.ijimpeng.2011.11.007 [5] Severino, E., & El-Tawil, S. (2003). Collision of vehicles with bridge piers. Computational Fluid and Solid Mechanics 2003, 10(3), 637–640. https://doi.org/10.1016/B978-008044046-0.50156-1 [6] Baker, J. W. (2007). Measuring bias in structural response caused by ground motion scaling. Pacific Conference on Earthquake Engineering, 056, 1–6. https://doi.org/10.1002/eqe [7] Dong, Y., & Frangopol, D. M. (2015). Risk and resilience assessment of bridges under mainshock and aftershocks incorporating uncertainties. Engineering Structures, 83, 198–208. https://doi.org/10.1016/j.engstruct.2014.10.050 [8] Cao, R., Agrawal, A. K., El-Tawil, S., Xu, X., & Wong, W. (2019). Performance-Based Design Framework for Bridge Piers Subjected to Truck Collision. Journal of Bridge Engineering, 24(7), 04019064. https://doi.org/10.1061/(asce)be.1943-5592.0001423 [9] Demartino, C., Wu, J. G., & Xiao, Y. (2017). Response of shear-deficient reinforced circular RC columns under lateral impact loading. International Journal of Impact Engineering, 109, 196–213. https://doi.org/10.1016/j.ijimpeng.2017.06.011 [10] Gholipour, G., Zhang, C., & Mousavi, A. A. (2018). Effects of axial load on nonlinear response of RC columns subjected to lateral impact load: Ship-pier collision. Engineering Failure Analysis, 91(April), 397–418. https://doi.org/10.1016/j.engfailanal.2018.04.055 [11] Abdelkarim, O. I., & ElGawady, M. A. (2017). Performance of bridge piers under vehicle collision. Engineering Structures, 140, 337–352. https://doi.org/10.1016/j.engstruct.2017.02.054 [12] Wan, Y., Zhu, L., Fang, H., Liu, W., & Mao, Y. (2019). Experimental testing and numerical simulations of ship impact on axially loaded reinforced concrete piers. International Journal of Impact Engineering, 125(December 2018), 246–262. https://doi.org/10.1016/j.ijimpeng.2018.11.016 [13] Fan, W., Shen, D., Huang, X., & Sun, Y. (2020). Reinforced concrete bridge structures under barge impacts: FE modeling, dynamic behaviors, and UHPFRC-based strengthening. Ocean Engineering, 216(July), 108116. https://doi.org/10.1016/j.oceaneng.2020.108116 [14] Garcia Reyes, L. E. (1998). Dinámica estructural aplicada al diseño sísmico. [15] Muñoz Diaz, E. E. (2011). Ingeniería de puentes, Reseña histórica, tipología, diagnósticos y recuperación – Tomo 1. Colombia. Editorial Pontificia Universidad Javeriana. [16] Muñoz Diaz, E. E. (2011). Ingeniería de puentes, Reseña histórica, tipología, diagnósticos y recuperación – Tomo 2. Colombia. Editorial Pontificia Universidad Javeriana. [17] Cusba M. (2011). Estudio de causas y soluciones estructurales del colapso total o parcial de los Puentes vehiculares de Colombia desde 1989 al 2011, y la evaluación de las consecuencias del derrumbamiento de uno de ellos (Tesis de pregrado). Pontificia Universidad Javeriana, Bogotá D.C. [18] Norma Colombiana de diseño de puentes – LRFD – CCP 14. Asociación Colombiana de Ingeniería sísimica – AIS, Bogotá D.C., Colombia, 26 de Junio de 2015. [19] Mander, J. B., Priestley, M. J. N., and Park, R. (1988). “Theoretical stress‐strain model for confined concrete.” J. Struct. Engrg., ASCE, 114(8), 1804–1826. [20] Spoelstra, M. R., Monti, G. (1999). “FRP-Confined Concrete Model.” Journal of composites for construction Vol. 3., ASCE,. [21] Dalmau M. R., Vilardell J. (2003). Análisis plástico de estructuras introducción. Ediciones UPC. www.edicionsupc.es. [22] William D. Callister, David G. Rethwisch. Ciencia e Ingeniería de Materiales: Introducción 9ª Edición, Wiley; 9a edición (4 de diciembre de 2013), ISBN-13: 978-1118324578. [23] Repositorio IDU [ESTUDIOS Y DISEÑOS DE LA TRONCAL NORTE QUITO SUR, DESDE LA AVENIDA PASEO DE LOS LIBERTADORES AL LÍMITE DEL DISTRITO CON SOACHA, EN BOGOTÁ D.C. – DISEÑO ESTRUCTURAL]. Recuperado el 15 de septiembre 2023 de https://webidu.idu.gov.co/jspui/handle/123456789/76743 [24] (Chalco Aluminium. Aluminio en la industria del transporte. Recuperado el 18 de octubre, 2023, en https://www.chalcoaluminum.com/es/application/aluminum-in-transportation/#veh%C3%ADculos%20comerciales).