Publication: Biomateriales basados en fermanal, una opción para la fabricación de implantes quirúrgicos
Abstract (Spanish)
Abstract (English)
Extent
Collections
References
Aperador W., Vargas A., Betancur J. (2012). Evaluation of passivation of the austenitic FeMnAl alloy. Revista Latinoamericana de Metalurgia y Materiales 32, 236-243
Aperador W., Bautista Ru´ız J. H., Pardo Cuervo O. (2012). Comportamiento electroqu´ımico de las pel´ıculas delgadas de CrN/Cr obtenidas variando el potencial BIAS. Revista Mexicana de Ingenier´ıa Qu´ımica 11, 145-154.
Białon J., Dudek D., Kobyla ´ nska-Szkaradek K., ´ Zastawny A. (1983). The influence of nuclear radiation on some physical properties of fermanalsteel. Materials Science and Engineering 59, 217-222
Bonfield W. (1981). Mechanical properties of bone. Biomaterials 2, 251-252
Bordji K., Jouzeau J.Y., Mainard D., Payan E., Netter P., Rie K.T., Stucky T., Hage-Ali M. (1996). Cytocompatibility of Ti-6Al-4V and Ti-5Al-2.5Fe alloys according to three surface treatments, using human fibroblasts and osteoblasts. Biomaterials 17, 929-940
Bou-Saleh Z., Shahryari A., Omanovic S. (2007). Enhancement of corrosion resistance of a biomedical grade 316LVM stainless steel by potentiodynamic cyclic polarization. Thin Solid Films 515, 4727-4737
Brune D., Hultquist G. (1985). Corrosion of a stainless steel with low nickel content under static conditions. Biomaterials 6, 265-268
Cook S.D., Tomas K.A., Harding A.F., Collings A. (1986). The in vivo performance of 250 internal fixation devices; a fellow up study. Biomaterials 8, 177-184
Geetha M., Singh A.K., Asokamani R., Gogia A.K. (2009). Ti based biomaterials, the ultimate choice for orthopaedic implants - A review. Progress in Materials Science 54, 397-425
Langer R., Cima L. G., Tamada J. A., Wintermantel E. (1990). Future directions in biomaterials. Biomaterials 11, 738-745
Lins V. F., Freitas M. A., Paula e Silva E. M. (2005). Corrosion resistance study of Fe-MnAl-C alloys using immersion and potentiostatic tests. Applied Surface Science 250, 124-134.
Perez-Alc ´ azar G.A. (2004). Propiedades ´ estructurales y magneticas de aceros Fe-Mn- ´ Al, ”fermanal”. Revista de la Academia Colombiana de Ciencias 28, 265-274
Pourbaix M. (1984). Electrochemical corrosion of metallic biomaterials. Biomaterials 5, 122-134.
Sabine B., Fung Ang S., Schneider G. A. (2010). On the mechanical properties of hierarchically structured biological materials. Biomaterials 31, 6378-6385.
Samuel S., Nag S., Scharf T. W., Banerjee R. (2008). Wear resistance of laser-deposited boride reinforced Ti-Nb-Zr-Ta alloy composites for orthopedic implants. Materials Science and Engineering: C 28, 414-420
Shahryari A., Omanovic S., Szpunar J. A. (2008). Electrochemical formation of highly pitting resistant passive films on a biomedical grade 316LVM stainless steel surface. Materials Science and Engineering: C 28, 94-106.
Shih-Hang C., Bor-Yann C., Yung-Chih L.. (2012). Toxicity assessment of three-component Fe-CrNi biomedical materials using an augmented simplex design. Materials Science and Engineering: C 32, 1893-1896
Tapash R., Rautray R., Kyo-Han K. (2011). Ion implantation of titanium based biomaterials. Progress in Materials Science 56, 1137-1177
Tjong S.C. (1990). Electron microscope observations of phase decompositions in an austenitic Fe-8.7Al-29.7Mn-1.04C alloy. Materials Characterization 24, 275-292
Wang C.J., Chang Y.C. (2005). NaCl-induced hot corrosion of Fe-Mn-Al-C alloys. Materials Chemistry and Physics 76, 151-161
Zhang Y.S., Lu X., Tian X., Qin Z.(2002). Compositional dependence of the transition, structural stability, magnetic properties and electrical resistivity in Fe-Mn-Al-Cr-Si alloys. Materials Science and Engineering 334, 19-27