Publication: Open Source EEG Platform with Reconfigurable Features for Multiple-scenarios
Files
Authors
Abstract (Spanish)
Abstract (English)
Extent
Collections
Collections
References
B.J. Kim, M.H. Lee, and S.W. Lee, “Intention analysis based on brain signal for participation induction during rehabilitation”, 2015, pp. 1–2.
S. Lee, Y. Shin, S. Woo, K. Kim, and H.N. Lee, “Review of Wireless Brain-Computer Interface Systems”, in Brain-Computer Interface Systems - Recent Progress and Future Prospects, R. Fazel-Rezai, Ed. InTech, 2013.
J.T. Valderrama, A. de la Torre, I. Alvarez, J.C. Segura, M. Sainz, and J.L. Vargas, “A flexible and inexpensive high-performance auditory evoked response recording system appropriate for research purposes”, Biomed. Eng. Biomed. Tech., vol. 59, no. 5, Jan. 2014.
E. Yin, Z. Zhou, J. Jiang, Y. Yu, and D. Hu, “A Dynamically Optimized SSVEP Brain–Computer Interface (BCI) Speller”, IEEE Trans. Biomed. Eng., vol. 62, no. 6, pp. 1447–1456, Jun. 2015.
T.S. Mel’nikova, S.I. Andrushkyavichus, and V.N. Krasnov, “Diurnal Dynamics of Reactivity in a Stress Test in Patients with Depression”, Neurosci. Behav. Physiol., vol. 45, no. 4, pp. 398–403, May 2015.
T. Meyer et al., “The role of frontal EEG asymmetry in post-traumatic stress disorder”, Biol. Psychol., vol. 108, pp. 62–77, May 2015.
S.F. Azab et al., “Childhood temporal lobe epilepsy: correlation between electroencephalography and magnetic resonance spectroscopy: a case–control study”, Ital. J. Pediatr., vol. 41, no. 1, Dec. 2015.
I. Mporas, V. Tsirka, E.I. Zacharaki, M. Koutroumanidis, M. Richardson, and V. Megalooikonomou, “Seizure detection using EEG and ECG signals for computer-based monitoring, analysis and management of epileptic patients”, Expert Syst. Appl., vol. 42, no. 6, pp. 3227–3233, Apr. 2015
M. Valderrama et al., “Identifying an increased risk of epileptic seizures using a multi-feature EEG–ECG classification”, Biomed. Signal Process. Control, vol. 7, no. 3, pp. 237–244, May 2012.
I. Constant and N. Sabourdin, “Monitoring depth of anesthesia: from consciousness to nociception. A window on subcortical brain activity”, Pediatr. Anesth., vol. 25, no. 1, pp. 73–82, Jan. 2015.
Z. Liang et al., “EEG entropy measures in anesthesia”, Front. Comput. Neurosci., vol. 9, Feb. 2015.
M. Peker, B. Şen, and H. Gürüler, “Rapid Automated Classification of Anesthetic Depth Levels using GPU Based Parallelization of Neural Networks”, J. Med. Syst., vol. 39, no. 2, Feb. 2015.
W. David Hairston et al., “Usability of four commercially-oriented EEG systems”, J. Neural Eng., vol. 11, no. 4, p. 046018, Aug. 2014.
V. Mihajlovic, B. Grundlehner, R. Vullers, and J. Penders, “Wearable, Wireless EEG Solutions in Daily Life Applications: What are we Missing?”, IEEE J. Biomed. Health Inform., vol. 19, no. 1, pp. 6–21, Jan. 2015.
Y. Iwatani et al., “Ictal high-frequency oscillations on scalp EEG recordings in symptomatic West syndrome”, Epilepsy Res., vol. 102, no. 1–2, pp. 60–70, Nov. 2012.
K. Kobayashi et al., “Detection of seizure-associated high-frequency oscillations above 500Hz”, Epilepsy Res., vol. 88, no. 2–3, pp. 139–144, Feb. 2010.
S.H. Choi, M. Lee, Y. Wang, and B. Hong, “Estimation of Optimal Location of EEG Reference Electrode for Motor Imagery Based BCI Using fMRI”, 2006, pp. 1193–1196.
A.K.O. Paukkunen and R. Sepponen, “The effect of ground electrode on the sensitivity, symmetricity and technical feasibility of scalp EEG recordings”, Med. Biol. Eng. Comput., vol. 46, no. 9, pp. 933–938, Sep. 2008.
W. Speier, A. Deshpande, and N. Pouratian, “A method for optimizing EEG electrode number and configuration for signal acquisition in P300 speller systems”, Clin. Neurophysiol., vol. 126, no. 6, pp. 1171–1177, Jun. 2015
A. Nonclercq and P. Mathys, “Quantification of Motion Artifact Rejection Due to Active Electrodes and DrivenRight-Leg Circuit in Spike Detection Algorithms”, IEEE Trans. Biomed. Eng., vol. 57, no. 11, pp. 2746–2752, Nov. 2010.
J.G. Webster and J.W. Clark, Eds., Medical instrumentation: application and design, 4th ed. Hoboken, NJ: John Wiley & Sons, 2010.
J.M. Lopez, J.C. Bohorquez, J. Bohorquez, M.A. Valderrama, and F. Segura-Quijano, “Wireless Electroencephalogram Acquisition System for Recordings in Small Animal Models”, 2013, pp. 3–4.
G.H. Klem, H.O. Lüders, H.H. Jasper, and C. Elger, “The ten-twenty electrode system of the International Federation. The International Federation of Clinical Neurophysiology”, Electroencephalogr. Clin. Neurophysiol. Suppl., vol. 52, pp. 3–6, 1999.
R.T. Pivik, R.J. Broughton, R. Coppola, R. J. Davidson, N. Fox, and M. R. Nuwer, “Guidelines for the recording and quantitative analysis of electroencephalographic activity in research contexts”, Psychophysiology, vol. 30, no. 6, pp. 547–558, Nov. 1993.
C. Borgmann, B. Roß, R. Draganova, and C. Pantev, “Human auditory middle latency responses: influence of stimulus type and intensity”, Hear. Res., vol. 158, no. 1–2, pp. 57–64, Aug. 2001.
L. Brown, J. van de Molengraft, R.F. Yazicioglu, T. Torfs, J. Penders, and C. Van Hoof, “A low-power, wireless, 8-channel EEG monitoring headset”, 2010, pp. 4197–4200.
Y.M. Chi, Y. Wang, Y.T. Wang, T.P. Jung, T. Kerth, and Y. Cao, “A Practical Mobile Dry EEG System for Human Computer Interfaces”, in Foundations of Augmented Cognition, vol. 8027, D. D. Schmorrow and C. M. Fidopiastis, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013, pp. 649–655.
Chin-Teng Lin, Chun-Hsiang Chuang, Chih-Sheng Huang, Yen-Hsuan Chen, and Li-Wei Ko, “Real-time assessment of vigilance level using an innovative Mindo4 wireless EEG system”, 2013, pp. 1528–1531.
Chin-Teng Lin et al., “Wireless and Wearable EEG System for Evaluating Driver Vigilance”, IEEE Trans. Biomed. Circuits Syst., vol. 8, no. 2, pp. 165–176, Apr. 2014.