Publication: Exploración de Modelos para Determinar el Incurrido en Seguros de Autos
Authors
Abstract (Spanish)
Abstract (English)
Director
Advisors/Directors
Extent
Collections
References
Asteriou, D., & Stephen, H. (2011). Applied Econometrics. New York: Palgrave MacMillan. Awad, M., & Khanna, R. (2015). Efficient Learning Machines. New York: Springer. Banco de la República. (Marzo de 2022). Banco de la República. Obtenido de https://www.banrep.gov.co/es/estadisticas/indice-precios-consumidor-ipc Bernico, M. (2018). Deep Learning Quick Reference. Mumbai: Packt Publishing. Brockwell, P., & Davis, R. (2002). Introduction to Time Series and Forecasting. Nueva York: Springer. Brockwell, P., & Richard, D. (2006). Time Series: Theory and Methods. New York: Springer. Buteikis, A. (2020). Multivariate models: Granger causality, VAR and VECM models. Multivariate models: Granger causality, VAR and VECM models. Vilna, Lituania. Cummins, D., & Griepentrog, G. (1985). Forecasting Automobile Insurance and Paid Claim Costs using Economoetric and ARIMA Models. International Journal of Forecasting 1, 203-215. Eshel, G. (s.f.). The Yule Walker Equations for the AR Coefficients. Fasecolda. (s.f.). Fasecolda. Obtenido de Facecolda: https://fasecolda.com/cms/wp content/uploads/2019/08/15_efectos_en_el_pg_en_subestimar_la_reserva_de_ibnr.pdf Hernandez, S. (2015). Análisis de Series de Tiempo. Curso Regional Sobre Hoja de Balance de Alimentos, Series de Tiempo y Análisis de Política. Ciudad de México: CEPAL. Hyndman, R., & Khandakar, Y. (2008). Automatic Time Series Forecasting: Th forecast Package for R. Journal of Statistical Software, 8-12. Kang, H. (2013). The Prevention and Handling of the Misssing Data. Korean Journal Anesthesiology, 402-406. Kwiatkowski, D., Phillips, P., Schmidt, P., & Shin, Y. (1991). Testing the null hypothesis of stationarity against the alternative of a unit root. Journal of Econometrics, 159-178. Lazerri, F. (2021). Machine Learning for Time Series with Python. Indianapolis: Wiley. Lütkepohl, H. (2005). New Introduction to Multiple Time Series Analysis. Berlin: Springer. Office for National Statistics. (2014). Consumer Price Index Technical Manual. Londres: Office for National Statistics. Riofrio, J., Chang, O., Fuelagan, R., & Peluffo, D. (2020). Forecasting the Consumer Price Index of Ecuador a Comparative Study of Predictive Models. International Journal on Advanced Science Engineering Information Technology. Rohmah, F. (2021). Comparison Four Kernels of SVR to Predict Consumer Price Index. Journal of Physics: Conference Series. Shumway, R., & Stoffer, D. (2006). Time Series Analysis and its Applications. New York: Springer. Super Intendencia Financiera de Colombia. (Marzo de 2022). Super Intendencia Financiera de Colombia. Obtenido de https://www.superfinanciera.gov.co/inicio/informes-y-cifras/cifras/establecimientos de-credito/informacion-periodica/diaria/tasa-de-cambio-representativa-del-mercado-trm-60819 Wade, C. (2020). Hands-On Gradient Boosting with XGBoost and scikit-learn. Packt Publishing. 52 Wang, Y., Wang, B., & Xinyang, Z. (2012). A new application of the support vector regression on the construction of financial conditions index to CPI prediction . International Conference on Computational Science, 1263-1272. Werner, G., & Claudine, M. (2016). Basic Ratemakingx. CAS. Wikipedia. (Mayo de 2014). Wikipedia. Obtenido de Wikipedia: https://es.wikipedia.org/wiki/Error_cuadr%C3%A1tico_medio Zhang, L. (2021). Time series forecast of sales volume based on XGBoost. Journal of Physics