Publication: Diseño e implementación de solución de deep learning sobre un sistema embebido, para la selección automática de mango ‘tommy atkins’
Authors
Abstract (Spanish)
Abstract (English)
Director
Advisors/Directors
Extent
Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.
Collections
References
FAO. (2024). Major Tropical Fruits Market Review: Preliminary Results 2024 (inf. téc.) (Ac- cessed on 28 january 2025). Food y Agriculture Organization of the United Nations. Rome. https://openknowledge.fao.org/handle/20.500.14283/cd3818en
USDA. (2007). United States Standards for Grades of Mangos (inf. téc.) (Accessed on 28 january 2024). United States Department of Agriculture. https://www.ams.usda.gov/grades- standards/mango-grades-and-standards
Barman, U., Choudhury, R., Sahu, D., & Barman, G. (2020). Comparison of convolution neural networks for smartphone image based real time classification of citrus leaf disease. Computers and Electronics in Agriculture, 177, 105661. https://doi.org/https://doi.org/ 10.1016/j.compag.2020.105661
Frutícola, P. (2024). Colombia: exportación de mango azúcar a EE.UU. con proyección de crecimiento [Accessed on 13 march 2024]. https://www.portalfruticola.com/noticias/ 2024/03/13/colombia-exportacion-de-mango-azucar-a-ee-uu-con-proyeccion-de- crecimiento/
Ghazal, S., Qureshi, W. S., Khan, U. S., Iqbal, J., Rashid, N., & Tiwana, M. I. (2021). Analysis of visual features and classifiers for Fruit classification problem. Computers and Electronics in Agriculture, 187, 106267. https://doi.org/https://doi.org/10.1016/j.compag.2021. 106267
UNECE. (2023). UNECE Standard FFV-45 concerning the marketing and commercial quality control of Mangoes (inf. téc.) (Accessed on 28 january 2024). United Nations Economic Commission for Europe. https://unece.org/trade/wp7/FFV-Standards
Díaz Gómez, A., et al. (2024). Sistema de detección de distancia en tiempo real mediante dashcams [B.S. thesis] [Accessed on 7 february 2025]. https://rodin.uca.es/handle/ 10498/33602
Ramírez Alberto, L. (2021). Desarrollo de un sistema para la identificación temprana de la antracnosis en frutos de mango basado en visión de máquina. https://repositorio.unal. edu.co/handle/unal/80092
Zawbaa, H. M., Hazman, M., Abbass, M., & Hassanien, A. E. (2014). Automatic fruit classifica- tion using random forest algorithm. 2014 International Conference on Hybrid Intelligent Systems (HIS), 164-168. https://doi.org/https://doi.org/10.1109/HIS.2014.7086191
Tan, M., & Le, Q. V. (2019). EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks. International Conference on Machine Learning. https://doi.org/https://doi. org/10.48550/arXiv.1905.11946
Padda, M. S., do Amarante, C. V. T., Garcia, R. M., Slaughter, D. C., & Mitcham, E. J. (2011). Methods to analyze physico-chemical changes during mango ripening: A mul- tivariate approach. Scientia Horticulturae, 128(2), 108-118. https://doi.org/10.1016/j. postharvbio.2011.06.002
González-Fernández, J., & Hormaza, J. (2020). Plagas y enfermedades del mango (Mangifera indica L.) [Accessed on 20 December 2024]. CSIC-IHSM La Mayora. https://www. mango.org/wp-content/uploads/2020/08/Mango_Plagas_y_Enfermedades_SPN.pdf
Montenegro Bermudez, A. F. (2021). Detección y clasificación de antracnosis en mango usando imágenes hiperespectrales y técnicas de aprendizaje profundo [Accessed on 20 Decem- ber 2024]. https://repositorio.unal.edu.co/handle/unal/81735
Pereira, L. F. S., Barbon Jr, S., Valous, N. A., & Barbin, D. F. (2018). Predicting the ripening of papaya fruit with digital imaging and random forests. Computers and Electronics in Agriculture, 145, 76-82. https://doi.org/https://doi.org/10.1016/j.compag.2017.12.029
Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., & Adam, H. (2017). MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications. arXiv preprint arXiv:1704.04861. https://doi.org/https: //doi.org/10.48550/arXiv.1704.04861
Zhao, X., Wang, L., Zhang, Y., Han, X., Deveci, M., & Parmar, M. (2024). A review of convolutional neural networks in computer vision. Artificial Intelligence Review, 57(99), 1-43. https://doi.org/https://doi.org/10.1007/s10462-024-10721-6
ONNX Community. (2024). ONNX: Open Neural Network Exchange [Accessed on 30 january 2025].
Núñez Bueno, L. (1996). Las moscas de las frutas en Colombia e incidencia en la fruticultura colombiana [Accessed on 15 November 2023]. Revista Colombiana de Entomología. https://repository.agrosavia.co/handle/20.500.12324/20433
ICA. (2022). Con un embarque de 20 toneladas, Colombia inició la exportación de mango fresco a Estados Unidos [Accessed on 20 December 2024]. https://www.ica.gov.co/noticias/ica- embarque-20toneladas-mango
Ploetz, R. C. (2003). Diseases of tropical fruit crops. CABI. https : / / doi . org / 10 . 1079 / 9780851993904.0000
You, J., Li, X., Low, M., Lobell, D., & Ermon, S. (2017). Deep gaussian process for crop yield prediction based on remote sensing data. Proceedings of the AAAI Conference on Artificial Intelligence, 31(1). https://doi.org/https://doi.org/10.1609/aaai.v31i1.11172
Suharjito, Elwirehardja, G. N., & Prayoga, J. S. (2021). Oil palm fresh fruit bunch ripeness classification on mobile devices using deep learning approaches. Computers and Elec- tronics in Agriculture, 188, 106359. https://doi.org/https://doi.org/10.1016/j.compag. 2021.106359