Publication: Arquitecturas óptimas de DNNs para diagnóstico estructural: modelado de micro-fisuras con datos sintéticos en ingeniería civil un enfoque basado en comparación, generación sintética inteligente y evaluación con datos reales para la predicción de la ubicación de las fallas intramurales
Abstract (Spanish)
Abstract (English)
Director
Advisors/Directors
Extent
Collections
Collections
References
TomM.Mitchell. Machine Learning. New York: McGraw-Hill, 1997.
JorgeClavijo,NancyTorresySandraSanchez.«Estudiodelprocesodemicro-fracturamiento en estructuras de concreto reforzado mediante la detección y análisis de emisiones acústicas». En: (2025). 1Escuela Colombiana de Ingeniería, Grupo Gimeci; 2Universidad de Nariño, Departamento de Física.
Arvin Ebrahimkhanlou y Salvatore Salamone. «Single-Sensor Acoustic Emission Source Localization in Plate-Like Structures Using Deep Learning». En: Aerospace 5.2 (2018). ISSN: 2226-4310. DOI: 10.3390/aerospace5020050. URL: https://www. mdpi.com/2226-4310/5/2/50.
Leandro N. De Castro. Fundamentals of natural computing : Chapman & Hall/CRC computer and information science series. Incluye índice. Boca Raton (USA): Chapman &Hall/CRC, 2006. URL: https://eci.metaproxy.org/ECI?groupID=1& url=https://search.ebscohost.com/login.aspx?direct=true& scope=site&db=nlebk&db=nlabk&AN=1499475.
L. Ojeda y J. Borenstein. «Terrain characterization and classification with a mobile robot». En: Journal of Field Robotics. Vol. 23. 2. 2006, págs. 103-122. DOI: 10.1002/ rob.20106.
M.Christian et al. «Application of Deep Learning to IMU Sensor Motion Analysis». En: Sensors 19.5 (2019), pág. 1024. DOI: 10.3390/s19051024.
Laura Melisa Patarroyo Godoy y Santiago Jején Salinas. «Detección del tipo de terreno sobre el que transita un Rover, a través de la aplicación de técnicas de machine learning». Tesis de mtría. Fundación Universitaria de Ciencias de la Salud, 2024. URL: https: //repositorio.escuelaing.edu.co/handle/001/2865.
Pegah Golestaneh, Mahsa Taheri y Johannes Lederer. How many samples are needed to train a deep neural network? 2024. arXiv: 2405.16696 [math.ST]. URL: https: //arxiv.org/abs/2405.16696.
André Bauer et al. Comprehensive Exploration of Synthetic Data Generation: A Survey. 2024. arXiv: 2401.02524 [cs.LG]. URL: https://arxiv.org/abs/2401. 02524.
MartinArjovsky,SoumithChintalayLéonBottou.WassersteinGAN.2017.arXiv:1701. 07875 [stat.ML]. URL: https://arxiv.org/abs/1701.07875.
EdmondAdib,FatemehAfghahyJohnJ.Prevost.ArrhythmiaClassificationusingCGANaugmented ECG Signals. 2022. arXiv: 2202.00569 [eess.SP]. URL: https: //arxiv.org/abs/2202.00569.
Siddharth Dinesh y Tirtharaj Dash. Reliable Evaluation of Neural Network for Multiclass Classification of Real-world Data. 2016. arXiv: 1612.00671 [cs.NE]. URL: https://arxiv.org/abs/1612.00671.
EstebanRealetal.RegularizedEvolution for Image Classifier Architecture Search. 2019. arXiv: 1802.01548 [cs.NE]. URL: https://arxiv.org/abs/1802. 01548.
Michael Stenger et al. STEB: In Search of the Best Evaluation Approach for Synthetic Time Series. 2025. arXiv: 2505.21160 [cs.LG]. URL: https://arxiv.org/ abs/2505.21160.
Zhou Wang et al. «Image quality assessment: from error visibility to structural similarity». En: IEEE Transactions on Image Processing 13.4 (2004), págs. 600-612.
S. Mekala y R. Gupta. «FastAPI-Based Deployment of Machine Learning Models in Containerized Environments». En: International Journal of Advanced Computer Science and Applications 13.8 (2022), págs. 45-51.
IanGoodfellow, Yoshua Bengio y Aaron Courville. Deep Learning. Book in preparation for MIT Press. MIT Press, 2016. URL: http://www.deeplearningbook.org.
John Smith, Alice Doe y Laura Johnson. «Feature-based classification of time series using Fourier transforms». En: Journal of Time Series Analysis 41.3 (2020), págs. 345-360.
Roberto Ríos-Prado, Arturo Anzueto-Ríos y Benito Tovar-Corona. «Feature Extraction and Classification of Heart Sounds Signals Based on Time-Dependent Entropy and Spectral Entropy Estimation». En: Computing in Cardiology 47 (2020), págs. 1-4.
Frank J. Massey. «The Kolmogorov–Smirnov test for goodness of fit». En: Journal of the American Statistical Association 46.253 (1951), págs. 68-78.
Yeferson Mesa y Diego Acevedo. Generación de datos sintéticos con WGAN-GP. Google Colab notebook. Consultado el 20 de julio de 2025. 2025. URL: https://colab. research.google.com/drive/1QCV61K_-28l0rRPcDDWNPQ0-MpcuMBuR? usp=sharing..
David E. Goldberg. Genetic Algorithms in Search, Optimization and Machine Learning. Addison-Wesley Longman Publishing Co., Inc., 1989.
SimonHaykin. Neural Networks: A Comprehensive Foundation. Macmillan College Publishing, 1994.
Ian Goodfellow, Yoshua Bengio y Aaron Courville. Deep Learning. MIT Press, 2016.
WaseemRawatyZenghuiWang.«Deepconvolutional neural networks for image classif ication: A comprehensive review». En: Neuralcomputation 29.9(2017), págs. 2352-2449.
RalphEJohnson. «Frameworks = (components + patterns)». En: Communications of the ACM 40.10 (1997), págs. 39-42.
Leonard Richardson, Mike Amundsen y Sam Ruby. RESTful web APIs: services for a changing world. O’Reilly Media, Inc., 2013.
Antero Taivalsaari et al. «Web browser as an application platform: the lively kernel experience». En: Software: Practice and Experience 41.2 (2011), págs. 171-200.
Luis M Vaquero et al. «A break in the clouds: towards a cloud definition». En: ACM SIGCOMMComputer Communication Review 39.1 (2009), págs. 50-55.
BrendanBurnsetal. «Borg, Omega, and Kubernetes». En: Communications of the ACM. Vol. 59. 5. ACM. 2016, págs. 50-57.
Sebastián Ramírez. FastAPI: The high performance web framework for building APIs with Python 3.7+. Disponible en https://fastapi.tiangolo.com. 2019.
QiangYuyLiyuanChen.«AcomparisonstudyofPythonRESTframeworksforMLmodel deployment». En: Software: Practice and Experience 51.12 (2021), págs. 2485-2496.
Yeferson Mesa. API para consumir modelos entrenados. https://github.com/ JffMv/microfisuras_IA. GitHub repository. 2025.
Yeferson Mesa. signal-generator Docker Image. https://hub.docker.com/ repository/docker/jffmv/microfisurasia/general. Docker Image. 2025.