Publication: Artificial reefs built by 3D printing: Systematisation in the design, material selection and fabrication
Authors
Authors
Slebi Acevedo, Carlos José
Lizasoain Artega, Esther
Idacoecha Vega, Irune
Blanco Fernández, Elena
Castro Fresno, Daniel
Alonso Estebanez, Alejandro
Alonso Cañon, Sara
Real Gutiérrez, Carlos
Boukhelf, Fouad
Stafford, Richard
Reis, Bianca
Van Der Linden, Pieter
Babé Gómez, Oscar
Sainz Meyer, Hugo
Franco Joao
Almada, Emanuel
Borges, María Teresa
Sousa Pinto, Isabel
Tuaty Guerra, Miriam
Lobo Artega, Jorge
Abstract (English)
Extent
Collections
Collections
References
A. Becker, M.D. Taylor, H. Folpp, M.B. Lowry, Managing the development of artificial reef systems: the need for quantitative goals, Fish Fish. 19 (4) (2018) 740–752, https://doi.org/10.1111/faf.12288.
M. Hammond, T. Bond, J. Prince, R.K. Hovey, D.L. McLean, An assessment of change to fish and benthic communities following installation of an artificial reef, Reg. Stud. Mar. Sci. 39 (2020), https://doi.org/10.1016/j.rsma.2020.101408.
A.B. Paxton, K.W. Shertzer, N.M. Bacheler, G.T. Kellison, K.L. Riley, J.C. Taylor, Meta-analysis reveals artificial reefs can be effective tools for fish community enhancement but are not one-size-fits-all, Front. Mar. Sci. 7 (2020), https://doi. org/10.3389/fmars.2020.00282.
J. Ramos, et al., An artificial reef at the edge of the deep: an interdisciplinary case study, Ocean Coast. Manag. 210 (2021), https://doi.org/10.1016/j. ocecoaman.2021.105729.
J.S. Lima, P. Sanchez-Jerez, L.N. dos Santos, I.R. Zalmon, Could artificial reefs increase access to estuarine fishery resources? Insights from a long-term assessment, Estuar. Coast. Shelf Sci. 242 (2020), https://doi.org/10.1016/j. ecss.2020.106858.
D. Cardenas-Rojas, E. Mendoza, M. Escudero, M. Verduzco-Zapata, Assessment of the performance of an artificial reef made of modular elements through small scale experiments, J. Mar. Sci. Eng. 9 (2) (2021) 1–18, https://doi.org/10.3390/ jmse9020130.
H. Pickering, D. Whitmarsh, A. Jensen, Artificial reefs as a tool to aid rehabilitation of coastal ecosystems: Investigating the potential, Mar. Pollut. Bull. 37 (8–12) (1999) 505–514, https://doi.org/10.1016/S0025-326X(98)00121-0.
A. Tessier, et al., Assessment of French artificial reefs: due to limitations of research, trends may be misleading, Hydrobiologia 753 (1) (2015) pp, https://doi. org/10.1007/s10750-015-2213-5
H.R. Lemoine, A.B. Paxton, S.C. Anisfeld, R.C. Rosemond, C.H. Peterson, Selecting the optimal artificial reefs to achieve fish habitat enhancement goals, Biol. Conserv. 238 (2019), https://doi.org/10.1016/j.biocon.2019.108200
B. Vivier, et al., Marine artificial reefs, a meta-analysis of their design, objectives and effectiveness, Glob Ecol Conserv 27 (2021), https://doi.org/10.1016/j. gecco.2021.e01538.
E. Riera, D. Lamy, C. Goulard, P. Francour, C. Hubas, Biofilm monitoring as a tool to assess the efficiency of artificial reefs as substrates: Toward 3D printed reefs, Ecol. Eng. 120 (2018) 230–237, https://doi.org/10.1016/j.ecoleng.2018.06.005.
Q. Xu, T. Ji, Z. Yang, Y. Ye, Preliminary investigation of artificial reef concrete with sulphoaluminate cement, marine sand and sea water, Constr. Build. Mater. 211 (2019) 837–846, https://doi.org/10.1016/j.conbuildmat.2019.03.272
J. Sempere-Valverde, E. Ostal´e-Valriberas, G.M. Farfan, ´ F. Espinosa, Substratum type affects recruitment and development of marine assemblages over artificial substrata: a case study in the alboran sea, Estuar. Coast. Shelf Sci. 204 (2018) 56–65, https://doi.org/10.1016/j.ecss.2018.02.017.
M. MacArthur, L.A. Naylor, J.D. Hansom, M.T. Burrows, Ecological enhancement of coastal engineering structures: passive enhancement techniques, Sci. Total Environ. 740 (2020), https://doi.org/10.1016/j.scitotenv.2020.139981.
J.S. Mohammed, Applications of 3D printing technologies in oceanography, Methods Oceanogr. 17 (2016) 97–117, https://doi.org/10.1016/j. mio.2016.08.001
M. Trilsbeck, N. Gardner, A. Fabbri, M.H. Haeusler, Y. Zavoleas, M. Page, Meeting in the middle: hybrid clay three-dimensional fabrication processes for bio-reef structures, Int. J. Archit. Comput. 17 (2) (2019) 148–165, https://doi.org/ 10.1177/1478077119849655
R.A. Buswell, W.R. Leal de Silva, S.Z. Jones, J. Dirrenberger, 3D printing using concrete extrusion: a roadmap for research, Cem. Concr. Res. 112 (2018) 37–49, https://doi.org/10.1016/j.cemconres.2018.05.006
Crouse. M, “3D Printed Coral Reefs,” Design World, 2016. https://www.designwor ldonline.com/3d-printed-coral-reefs/ (accessed Jul. 27, 2022).
] ReefDesignLab, “3D printed reefs. Large scale 3D printed oyster reef structures for the north sea,” 2021. https://www.reefdesignlab.com/3d-printed-reefs-1. (accessed Jul. 27, 2022).
] R. Frost, “3D printing is helping to regenerate Hong Kong’s precious coral reefs,” euronews.green, 2021. Accessed: Jul. 27, 2022. [Online]. Available: https://www. euronews.com/green/2021/01/11/3d-printing-is-helping-to-rebuild-hong-kong -s-precious-coral-reefs.
D. Klinges, “A new dimension to marine restoration: 3D printing coral reefs,” Mongabay, 2018, Accessed: Jul. 27, 2022. [Online]. Available: https://news.monga bay.com/2018/08/a-new-dimension-to-marine-restoration-3d-printing-coral-r eefs/
] B. Reis, et al., Artificial reefs in the North –East Atlantic area: Present situation, knowledge gaps and future perspectives, Ocean Coast. Manag. 213 (2021), https:// doi.org/10.1016/j.ocecoaman.2021.105854.
B. Khoshnevis, Automated construction by contour crafting - Related robotics and information technologies, Autom. Constr. 13 (1) (2004) 5–19, https://doi.org/ 10.1016/j.autcon.2003.08.012.
] S. El-Sayegh, L. Romdhane, S. Manjikian, “A critical review of 3D printing in construction: benefits, challenges, and risks”, Arch. Civ. Mech. Eng. 20 (2) (2020) https://doi.org/10.1007/s43452-020-00038-w.
R.J.M. Wolfs, A.S.J. Suiker, Structural failure during extrusion-based 3D printing processes, Int. J. Adv. Manuf. Technol. 104 (1–4) (2019) 565–584, https://doi.org/ 10.1007/s00170-019-03844-6.
X. Huang, Z. Wang, Y. Liu, W. Hu, W. Ni, On the use of blast furnace slag and steel slag in the preparation of green artificial reef concrete, Constr. Build. Mater. 112 (2016) 241–246, https://doi.org/10.1016/j.conbuildmat.2016.02.088.
Y. Bigdeli, M. Barbato, C.D. Lofton, M.T. Gutierrez-Wing, K.A. Rusch, Mechanical properties and performance under laboratory and field conditions of a lightweight fluorogypsum-based blend for economic artificial-reef construction, J. Mater. Civ. Eng. 32 (7) (2020) pp, https://doi.org/10.1061/(ASCE)MT.1943-5533.0003240.
EConcrete, “EConcrete,” 2022. https://econcretetech.com/ (accessed Oct. 18, 2022)
P. Duxson, J.L. Provis, G.C. Lukey, J.S.J. van Deventer, The role of inorganic polymer technology in the development of ‘green concrete’, Cem. Concr. Res. 37 (12) (Dec. 2007) 1590–1597, https://doi.org/10.1016/j.cemconres.2007.08.018.
S.H. Teh, T. Wiedmann, A. Castel, J. De Burgh, Hybrid life cycle assessment of greenhouse gas emissions from cement, concrete and geopolymer concrete in australia, J. Clean. Prod. 152 (2017) 312–320, https://doi.org/10.1016/j. jclepro.2017.03.122.
D.A. Salas, A.D. Ramirez, N. Ulloa, H. Baykara, A.J. Boero, Life cycle assessment of geopolymer concrete, Constr. Build. Mater. 190 (2018) 170–177, https://doi.org/ 10.1016/j.conbuildmat.2018.09.123.
A. Passuello, et al., Evaluation of the potential improvement in the environmental footprint of geopolymers using waste-derived activators, J. Clean. Prod. 166 (Nov. 2017) 680–689, https://doi.org/10.1016/j.jclepro.2017.08.007.
] R. Bajpai, K. Choudhary, A. Srivastava, K.S. Sangwan, M. Singh, Environmental impact assessment of fly ash and silica fume based geopolymer concrete, J. Clean. Prod. 254 (May 2020), 120147, https://doi.org/10.1016/j.jclepro.2020.120147.
] T. Xie, T. Ozbakkaloglu, Behavior of low-calcium fly and bottom ash-based geopolymer concrete cured at ambient temperature, Ceram. Int. 41 (4) (2015) 5945–5958, https://doi.org/10.1016/j.ceramint.2015.01.031.
] R. Rodríguez-Alvaro, ´ “Morteros para revestimiento con arido ´ procedente de concha de mejillon, ´ ” Universidade da Coruna, ˜ 2014. Accessed: Jul. 27, 2022. [Online]. Available: https://ruc.udc.es/dspace/handle/2183/13632.
C. Martínez García, “Estudio del comportamiento de la concha de mejillon ´ como arido ´ para la fabricacion ´ de hormigones en masa: aplicacion ´ en la cimentacion ´ de un modulo ´ experimental (Modulo ´ Biovalvo),” Universidade da Coruna, ˜ 2016. Accessed: Jul. 27, 2022. [Online]. Available: https://ruc.udc.es/dspace/handle/2 183/17489.
] A.I. Yoris-Nobile, et al., Life cycle assessment (LCA) and multi-criteria decisionmaking (MCDM) analysis to determine the performance of 3D printed cement mortars and geopolymers, J. Sustain Cem. Based Mater. (2022), https://doi.org/ 10.1080/21650373.2022.2099479.
CEN- European Committee for Standardization, EN 196-1:2016. Methods of testing cement. Part 1: Determination of strength. 2016.
] O. Ly, et al., Optimisation of 3D printed concrete for artificial reefs: Biofouling and mechanical analysis, Constr. Build. Mater. 272 (2021), https://doi.org/10.1016/j. conbuildmat.2020.121649.
] S. Alonso-Canon, ˜ E. Blanco-Fernandez, D. Castro-Fresno, A.I. Yoris-Nobile, L. Castanon-Jano, “Reinforcements in 3D printing concrete structures: a review,”, Arch. Civ. Mech. Eng. (2022). In press.
S. Pope, Turbulent Flows. Cambridge University Press, 2000.
J. Tu, G. H. Yeoh, and C. Liu, Computational Fluid Dynamics: a practical approach, vol. Second. 2012.
] B. Andersson, et al., Computational Fluid Dynamics for Engineers, Cambridge University Press, New York, 2012.
International Organization for Standardization, ISO 14040: Environmental Management - Life Cycle Assessment - Principles and Framework, 2 nd. 2006
International Organization for Standardization, ISO 14044: Environmental Management - Life Cycle Assessment - Requirements and Guidelines, 1 edn. 2006.
E.R. Grist, K.A. Paine, A. Heath, J. Norman, H. Pinder, The environmental credentials of hydraulic lime-pozzolan concretes, J. Clean. Prod. 93 (2015) 26–37, https://doi.org/10.1016/j.jclepro.2015.01.047
NREL, “U.S. Life Cycle Inventory Database,” 2012.
A. Jullien, C. Proust, T. Martaud, E. Rayssac, C. Ropert, Variability in the environmental impacts of aggregate production, Resour. Conserv. Recycl. 62 (2012) 1–13, https://doi.org/10.1016/j.resconrec.2012.02.002
UNPG, “Module d’informations environnementales de la production de granulats issus de roches massives,” 2011.
UNPG, “Module d’informations environnementales de la production de granulats issus de roches meubles,” 2011.
H. Stripple, “Life Cycle Assessment of Road. A Pilot Study for Inventory Analysis,” 2001. Accessed: Jul. 27, 2022. [Online]. Available: https://www.ivl.se/download /18.694ca0617a1de98f473458/1628416184474/FULLTEXT01.pdf.
U. M. Mroueh, P. Eskola, J. Laine-Ylijoki, K. Wellman, E. Makel ¨ a, ¨ and M. Juvankoski, “Life cycle assessment of road construction,” 2000.
RE-ROAD, “Life Cycle Assessment of Reclaimed Asphalt,” 2012.
Y. Huang, “Life Cycle Assessment of Use of Recycled Materials in Asphalt Pavements,” 2007.
T. Hakkinen, ¨ K. Makel ¨ a, ¨ Environmental adaption of concrete. Environmental impact of concrete and asphalt pavements, VTT Tied. - Valt. Tek. Tutkimusk. no. 1752 (1996).
Athena, “Cement and Structural Concrete Oroducts: Life Cycle Inventory Update #2,” 2005
M. L. Marceau, M. Nisbet, and M. G. Vangeem, “Life Cycle Inventory of Portland Cement Concrete,” 2011.
UNPG, “Module d’informations environnementales de la production de granulats recycl´es,” 2011
] L.K. Turner, F.G. Collins, Carbon dioxide equivalent (CO2-e) emissions: a comparison between geopolymer and OPC cement concrete, Constr. Build. Mater. 43 (2013) 125–130, https://doi.org/10.1016/j.conbuildmat.2013.01.023.
M. Yekkalar, M. R. Sabour, and M. Nikravan, “The environmental impacts of concrete containing Nano-SiO<inf>2</inf> and typical concrete on global warming and fossil fuel depletion: A comparison,” in Life-Cycle and Sustainability of Civil Infrastructure Systems - Proceedings of the 3rd International Symposium on LifeCycle Civil Engineering, IALCCE 2012, 2012, pp. 2435–2442.
] E. Lizasoain-Arteaga, I. Indacoechea-Vega, P. Pascual-Munoz, ˜ D. Castro-Fresno, Environmental impact assessment of induction-healed asphalt mixtures, J. Clean. Prod. 208 (2019) 1546–1556, https://doi.org/10.1016/j.jclepro.2018.10.223.
M. Nayak, S.S. Rath, M. Thirunavoukkarasu, P.K. Panda, B.K. Mishra, R. C. Mohanty, Maximizing biomass productivity and CO2 biofixation of microalga, scenedesmus sp. By using sodium hydroxide, J. Microbiol. Biotechnol. 23 (9) (2013) 1260–1268, https://doi.org/10.4014/jmb.1302.02044.
J. Santos, et al., Assessment of the environmental acceptability of potential artificial reef materials using two ecotoxicity tests: Luminescent bacteria and sea urchin embryogenesis, Chemosphere (2022), https://doi.org/10.1016/j. chemosphere.2022.136773.
R. Bajpai, K. Choudhary, A. Srivastava, K.S. Sangwan, M. Singh, Environmental impact assessment of fly ash and silica fume based geopolymer concrete, J. Clean. Prod. 254 (2020), 120147, https://doi.org/10.1016/j.jclepro.2020.120147.
A. Passuello, et al., Evaluation of the potential improvement in the environmental footprint of geopolymers using waste-derived activators, J. Clean. Prod. 166 (2017) 680–689, https://doi.org/10.1016/j.jclepro.2017.08.007.
D.A. Salas, A.D. Ramirez, N. Ulloa, H. Baykara, A.J. Boero, Life cycle assessment of geopolymer concrete, Constr. Build. Mater. 190 (2018) 170–177, https://doi.org/ 10.1016/j.conbuildmat.2018.09.123.
P. Duxson, J.L. Provis, G.C. Lukey, J.S.J. van Deventer, The role of inorganic polymer technology in the development of ‘green concrete’, Cem. Concr. Res. 37 (12) (2007) 1590–1597, https://doi.org/10.1016/j.cemconres.2007.08.018.