Publication: Evaluación del efecto citotóxico de puntos de carbono en células 3T3-L1 y vero
Authors
Authors
Abstract (Spanish)
Director
Advisors/Directors
Extent
Collections
Collections
References
J. Jeevanandam, A. Barhoum, Y. S. Chan, A. Dufresne, and M. K. Danquah, “Review on nanoparticles and nanostructured materials: history, sources, toxicity and regulations,” Beilstein J. Nanotechnol, vol. 9, pp. 1050–1074, 2018, doi: 10.3762/bjnano.9.98.
G. Guisbiers, S. Mejía-Rosales, and F. Leonard Deepak, “Nanomaterial properties: Size and shape dependencies,” Journal of Nanomaterials, vol. 2012, 2012, doi: 10.1155/2012/180976.
V. Francia, D. Montizaan, and A. Salvati, “Interactions at the cell membrane and pathways of internalization of nano-sized materials for nanomedicine,” Beilstein Journal of Nanotechnology, vol. 11, no. 1, pp. 338–353, Feb. 2020, doi: 10.3762/bjnano.11.25.
V. J. Mohanraj and Y. Chen, “Nanoparticles - A review,” Tropical Journal of Pharmaceutical Research, vol. 5, no. 1, pp. 561–573, 2007, doi: 10.4314/tjpr.v5i1.14634
C. Contini, M. Schneemilch, S. Gaisford, and N. Quirke, “Nanoparticle–membrane interactions,” Journal of Experimental Nanoscience, vol. 13, no. 1, Jan. 2018, doi: 10.1080/17458080.2017.1413253.
J. Fan, M. Claudel, C. Ronzani, Y. Arezki, L. Lebeau, and F. Pons, “Lessons from a comprehensive study on a nanoparticle library,” International Journal of Pharmaceutics, vol. 569, p. 118521, 2019, doi: 10.1016/j.ijpharm.2019.118521ï
X. Xu et al., “Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments,” Journal of the American Chemical Society, vol. 126, no. 40, Oct. 2004, doi: 10.1021/ja040082h.
Y. P. Sun et al., “Quantum-sized carbon dots for bright and colorful photoluminescence,” Journal of the American Chemical Society, vol. 128, no. 24, pp. 7756–7757, 2006, doi: 10.1021/ja062677d.
M. J. Molaei, “Carbon quantum dots and their biomedical and therapeutic applications: A review,” RSC Advances, vol. 9, no. 12, pp. 6460–6481, 2019, doi: 10.1039/c8ra08088g.
T. v. de Medeiros, J. Manioudakis, F. Noun, J.-R. Macairan, F. Victoria, and R. Naccache, “Microwave-assisted synthesis of carbon dots and their applications,” Journal of Materials Chemistry C, vol. 7, no. 24, 2019, doi: 10.1039/C9TC01640F.
S. Zheng et al., “Preparation of gadolinium doped carbon dots for enhanced MR imaging and cell fluorescence labeling,” Biochemical and Biophysical Research Communications, vol. 511, no. 2, pp. 207–213, 2019, doi: 10.1016/j.bbrc.2019.01.098.
L. Gonzalez, D. Lison, and M. Kirsch-Volders, “Genotoxicity of engineered nanomaterials: A critical review,” Nanotoxicology, vol. 2, no. 4, Jan. 2008, doi: 10.1080/17435390802464986.
L. Hu et al., “Multifunctional carbon dots with high quantum yield for imaging and gene delivery,” Carbon, vol. 67, Feb. 2014, doi: 10.1016/j.carbon.2013.10.023.
V. N. Mehta, S. Jha, and S. K. Kailasa, “One-pot green synthesis of carbon dots by using Saccharum officinarum juice for fluorescent imaging of bacteria (Escherichia coli) and yeast (Saccharomyces cerevisiae) cells,” Materials Science and Engineering: C, vol. 38, May 2014, doi: 10.1016/j.msec.2014.01.038.
X. Yang, Y. Zhuo, S. Zhu, Y. Luo, Y. Feng, and Y. Dou, “Novel and green synthesis of high-fluorescent carbon dots originated from honey for sensing and imaging,” 31 Biosensors and Bioelectronics, vol. 60, pp. 292–298, Oct. 2014, doi: 10.1016/j.bios.2014.04.046.
F. Du et al., “Nitrogen-doped carbon dots with heterogeneous multi-layered structures,” RSC Advances, vol. 4, no. 71, pp. 37536–37541, 2014, doi: 10.1039/c4ra06818a.
M. Tuerhong, Y. XU, and X.-B. YIN, “Review on Carbon Dots and Their Applications,” Chinese Journal of Analytical Chemistry, vol. 45, no. 1, Jan. 2017, doi: 10.1016/S1872-2040(16)60990-8.
J. H. Zhang, A. Niu, J. Li, J. W. Fu, Q. Xu, and D. S. Pei, “In vivo characterization of hair and skin derived carbon quantum dots with high quantum yield as long-term bioprobes in zebrafish,” Scientific Reports, vol. 6, Nov. 2016, doi: 10.1038/srep37860
F. Du et al., “Engineering iodine-doped carbon dots as dual-modal probes for fluorescence and X-ray CT imaging,” International Journal of Nanomedicine, Nov. 2015, doi: 10.2147/IJN.S82778.
C.-W. Lai, Y.-H. Hsiao, Y.-K. Peng, and P.-T. Chou, “Facile synthesis of highly emissive carbon dots from pyrolysis of glycerol; gram scale production of carbon dots/mSiO2 for cell imaging and drug release,” Journal of Materials Chemistry, vol. 22, no. 29, 2012, doi: 10.1039/c2jm32206d.
Y.-Y. Yao, G. Gedda, W. M. Girma, C.-L. Yen, Y.-C. Ling, and J.-Y. Chang, “Magnetofluorescent Carbon Dots Derived from Crab Shell for Targeted Dual-Modality Bioimaging and Drug Delivery,” ACS Applied Materials & Interfaces, vol. 9, no. 16, Apr. 2017, doi: 10.1021/acsami.7b01599.
“Radiación ionizante (Ionizing Radiation) | ToxFAQ | ATSDR.” https://www.atsdr.cdc.gov/es/toxfaqs/es_tfacts149.html (accessed Apr. 15, 2021).
“Radiation Therapy for Cancer - National Cancer Institute.” https://www.cancer.gov/about-cancer/treatment/types/radiation-therapy (accessed Apr. 15, 2021).
J. Ruan et al., “Graphene Quantum Dots for Radiotherapy,” ACS Applied Materials & Interfaces, vol. 10, no. 17, May 2018, doi: 10.1021/acsami.7b18975.
F. Du et al., “Engineered gadolinium-doped carbon dots for magnetic resonance imaging-guided radiotherapy of tumors,” Biomaterials, vol. 121, Mar. 2017, doi: 10.1016/j.biomaterials.2016.07.008.
B. Demir et al., “Carbon dots and curcumin-loaded CD44-Targeted liposomes for imaging and tracking cancer chemotherapy: A multi-purpose tool for theranostics,” Journal of Drug Delivery Science and Technology, vol. 62, Apr. 2021, doi: 10.1016/j.jddst.2021.102363.
A. Montoro et al. “Evaluación de la radiosensibilidad del personal sanitario en procedimientos de tratamiento o diagnóstico médico con radiaciones” Dialnet, Nº. 134, 2014, págs. 15-25. ISSN: 1888-5438.
Ö. S. Aslantürk, “In Vitro Cytotoxicity and Cell Viability Assays: Principles, Advantages, and Disadvantages,” Genotoxicity - A Predictable Risk to Our Actual World, pp. 1–18, 2018, doi: 10.5772/intechopen.71923
J. M. Posimo et al., “Viability assays for cells in culture,” Journal of Visualized Experiments, vol. 2, no. 83, pp. 1–14, 2014, doi: 10.3791/50645.
T. L. Riss et al., Cell Viability Assays. Eli Lilly & Company and the National Center for Advancing Translational Sciences, 2004.
P. Zuo, X. Lu, Z. Sun, Y. Guo, and H. He, “A review on syntheses, properties, characterization and bioanalytical applications of fluorescent carbon dots,” 32 Microchimica Acta, vol. 183, no. 2. Springer-Verlag Wien, pp. 519–542, Feb. 01, 2016, doi: 10.1007/s00604-015-1705-3.
S. C. Ray, A. Saha, N. R. Jana, and R. Sarkar, “Fluorescent Carbon Nanoparticles: Synthesis, Characterization, and Bioimaging Application,” The Journal of Physical Chemistry C, vol. 113, no. 43, Oct. 2009, doi: 10.1021/jp905912n.
Y. Yang et al., “One-step synthesis of amino-functionalized fluorescent carbon nanoparticles by hydrothermal carbonization of chitosan,” Chemical Communications, vol. 48, no. 3, pp. 380–382, 2012, doi: 10.1039/c1cc15678k
M. L. Bhaisare, A. Talib, M. S. Khan, S. Pandey, and H. F. Wu, “Synthesis of fluorescent carbon dots via microwave carbonization of citric acid in presence of tetraoctylammonium ion, and their application to cellular bioimaging,” Microchimica Acta, vol. 182, no. 13–14, pp. 2173–2181, 2015, doi: 10.1007/s00604-015-1541-5.
J.-H. Liu et al., “Cytotoxicity of Fluorescent Carbon Nanoparticles,” Nano LIFE, vol. 01, no. 01n02, Mar. 2010, doi: 10.1142/S1793984410000158.
A. Kroll, M. H. Pillukat, D. Hahn, and J. Schnekenburger, “Interference of engineered nanoparticles with in vitro toxicity assays,” Archives of Toxicology, vol. 86, no. 7, Jul. 2012, doi: 10.1007/s00204-012-0837-z.
N. A. Monteiro-Riviere and A. O. Inman, “Challenges for assessing carbon nanomaterial toxicity to the skin,” Carbon, vol. 44, no. 6, May 2006, doi: 10.1016/j.carbon.2005.11.004.
S. Sahu, B. Behera, T. K. Maiti, and S. Mohapatra, “Simple one-step synthesis of highly luminescent carbon dots from orange juice: application as excellent bio-imaging agents,” Chemical Communications, vol. 48, no. 70, 2012, doi: 10.1039/c2cc33796g.
C. Dias et al., “Biocompatibility and bioimaging potential of fruit-based carbon dots,” Nanomaterials, vol. 9, no. 2, Feb. 2019, doi: 10.3390/nano9020199.
S. Singh, D. Singh, S. P. Singh, and A. K. Pandey, “Candle soot derived carbon nanoparticles: Assessment of physico-chemical properties, cytotoxicity and genotoxicity,” Chemosphere, vol. 214, pp. 130–135, Jan. 2019, doi: 10.1016/j.chemosphere.2018.09.112
Ashmi Mewada and Madhuri Sharon, Carbon Dots As Theranostic Agents, vol. 1. Wiley, 2018.
N. C. Ammerman, M. Beier‐Sexton, and A. F. Azad, “Growth and Maintenance of Vero Cell Lines,” Current Protocols in Microbiology, vol. 11, no. 1, Nov. 2008, doi: 10.1002/9780471729259.mca04es11
R. Chen, “MTT Assay of Cell Numbers after Drug/Toxin Treatment,” 2011. [Online]. Available: http://www.bio-protocol.org/e51.
“GraphPad Prism.” La Jolla, California, USA, Mar. 15, 2021.
J. Schneider et al., “Molecular Fluorescence in Citric Acid-Based Carbon Dots,” The Journal of Physical Chemistry C, vol. 121, no. 3, Jan. 2017, doi: 10.1021/acs.jpcc.6b12519.
L. Tang et al., “Deep Ultraviolet Photoluminescence of Water-Soluble Self-Passivated Graphene Quantum Dots,” ACS Nano, vol. 6, no. 6, Jun. 2012, doi: 10.1021/nn300760g.
C. Menezes, E. Valerio, and E. Dias, “The Kidney Vero-E6 Cell Line: A Suitable Model to Study the Toxicity of Microcystins,” in New Insights into Toxicity and Drug Testing, InTech, 2013.