Publication: Evaluación del proceso Fenton para el tratamiento de un agua sintética coloreada empleando calamina
Abstract (Spanish)
Abstract (English)
Extent
Collections
References
Hassaan M. Advanced oxidation process of some organic pollutants in fresh and seawater. [tesis doctoral en internet]. Egipto: Port Said University; 2016 [citada 16 feb 2022]. 180 p.
Ayele A, Getachew D, Kamaraj M, Suresh A. Phycoremediation of Synthetic Dyes: An Effective and Eco-Friendly Algal Technology for the Dye Abatement. J chem [internet]. 2021 [citado 16 feb 2022]; 1-14. Disponible en: https://doi.org/10.1155/2021/9923643
Berradi M, Hsissou R, Khudhair M, Assouag M, El Bachiri A, El Harfi A. Textile finishing dyes and their impact on aquatic environs. Heliyon [internet]. 2019 nov [citado 16 feb 2022]; 5(11):1-11. Disponible en: https://doi.org/10.1016/j.heliyon.2019.e02711
Hossain L, Sarker S, Khan S. Evaluation of Present and Future Wastewater Impacts of Textile Dyeing Industries in Bangladesh. Environ Develop. [internet]. 2018 mar [citado 6 nov 2021]; 26:23-33. Disponible en: https://doi.org/10.1016/j.envdev.2018.03.005
Stolz A. Basic and applied aspects in the microbial degradation of azo dyes. App Microbiol Biotechnol. [internet]. 2001 [citado 6 nov 2021]; 56(1-2):69-80. Disponible en http://doi.org/10.1007/s002530100686
Environmental Chemicals Data and Information Network, Commission of the European Communities; 1993, Environmental Institute, Ispra, Italy
Feng J, Cerniglia, C, Chen C. Toxicological significance of azo dye metabolism by human intestinal microbiota. Front Biosci (Elite Ed). 2012 Jan 1; 4:568-86.
Monash P, Pugazhenthi G. Adsorption of crystal violet dye from aqueous solution using mesoporous materials synthesized at room temperature. Adsorption. [internet].2009 feb [citado 6 nov 2021];15:390–405. Disponible en: https://doi.org/10.1007/s10450-009-9156-y
Forgacs E, Cserháti T, Oros G. Removal of synthetic dyes from wastewaters: a review. Environ Int. [internet]. 2004 sep [citado 6 nov 2021]; 30:953–71. Disponible en: https://doi.org/10.1016/j.envint.2004.02.001
Pang Y, Abdullah A. Current Status of Textile Industry Wastewater Management and Research Progress in Malaysia: A Review. Clean. [internet]. 2013 aug [citado 6 nov 2021]; 41(8):751–64. Disponible en: https://doi.org/10.1002/clen.201000318
Mohan N, Balasubramanian N, Basha CA. Electrochemical oxidation of textile wastewater and its reuse. J Hazard Mater. [internet]. 2007 aug [citado 6 nov 2021]; 147:644–51. Disponible en: https://doi.org/10.1016/j.jhazmat.2007.01.063
Zaroual Z, Azzi M, Saib N, Chainet E. Contribution to the study of electro-coagulation mechanism in basic textile effluent. J Hazard Mater. [internet]. 2006 [citado 22 nov 2021]; 131:73–8. Disponible en: https://doi.org/10.1016/j.jhazmat.2005.09.021
Dükkancı M, Gündüz G, Yılmaz S, Prihod’ko R. Heterogeneous Fenton-like degradation of Rhodamine 6G in water using CuFeZSM-5 zeolite catalyst prepared by hydrothermal synthesis. J Hazard Mater. [internet]. 2010 [citado 22 nov 2021]; 181: 343-50. Disponible en: https://doi.org/10.1016/j.jhazmat.2010.05.016
Nidheesh P, Gandhimathi R. Trends in electro-Fenton process for water and wastewater treatment: an overview. Desalination. [internet]. 2012 aug [citado 22 nov 2021]; 299:1–15. Disponible en: https://doi.org/10.1016/j.desal.2012.05.011
Turbay E. Efficient Operation of photoFenton Process for the Treatment of Emerging Contaminants in Water Solutions [tesis doctoral en internet]. Barcelona: Universitat Politècnica de Catalunya; 2013 [citada 22 nov 2021]. 207 p. Disponible en: http://hdl.handle.net/10803/134805
Martín M, López F, Torralba J. Production of sponge iron powder by reduction of rolling mill scale. Ironmak Steelmak. [internet]. 2012 mar [citado 16 feb 2022]; 39(3): 155-62. Disponible en: https://doi.or g/10.1179/1743281211Y.0000000078
Khaerudini D, Chanif I, Insiyanda D, Destyorini F, Alva S, Pramono A. Preparation and Characterization of Mill Scale Industrial Waste Reduced by Biomass‑ Based Carbon. J Sustain Metall [internet]. 2019 aug [citado 16 feb 2022]; 5: 510–18. Disponible en: https://doi.org/10.1007/s40831-019-00241-x
Oladipo E. Oxidative Degradation of Methylene Blue Using Fenton Reagent. IJSER. [internet]. 2015 nov [citado 21 nov 2021]; 6(11):984-96. Disponible en: https://www.researchgate.net/publication /319629691_Oxidative_Degradation_of_Methyl ene_Blue_Using_Fenton_Reagent
Mousavi S, Vasseghian Y, Bahadori A. Evaluate the Performance of Fenton Process for the Removal of Methylene Blue from Aqueous Solution: Experimental, Neural Network Modeling and Optimization. Environ Prog Sustain. [internet].2018. [citado 21 nov 2021]; 39(2):1-7. Disponible en: https://doi.org/10.1002/ep.13126
Neamtu M, Yediler A, Siminiceanu I, Kettrup A. Oxidation of commercial reactive azo dye aqueous solutions by the photo-Fenton and Fenton-like processes. J Photochem and Photobiol A: Chem. [internet]. 2003 may [citado 21 nov 2021]; 87-93. Disponible en: https://doi.org/10.1016/S1010-6030(03)00270-3
Nasruddin M, Fahmi M, Lun Y, Abidin Z, Noer Z. Influence of pH and FeSO4 to H2O2 Ratio in Degradation of p-Cresol by Fenton’s Reagent. AIP Confer Proceed. [internet]. 2020 jun [citado 21 nov 2021]; 2221(1): 1-6. Disponible en: https://doi.org/10.1063/5.0003179
Dutta K, Mukhopadhyay S, Bhattacharjee S, Chaudhuri B. Chemical oxidation of methylene blue using a Fenton-like reaction. J Hazard Mater. [internet]. 2001 [citado 21 nov 2021]; 84(1):57-71. Disponible en: https://doi.org/10.1016/S0304-3894(01)00202-3
Giwa A, Bello I, Olabintan A, Bello O, Saleh T. Kinetic and thermodynamic studies of Fenton oxidative decolorization of methylene blue. Heliyon. [internet]. 2020 aug [citado 21 nov 2021]; 6(8): 1-7. Disponible en: https://doi.org/10.1016/j.heliyon.2020.e04454
Xu L, Wang J. A heterogeneous Fenton-like system with nanoparticulate zero-valent iron for removal of 4-chloro-3-methyl phenol. J Hazard Mater. [internet]. 2011 feb [citado 21 nov 2021]; 186(1):256-64. Disponible en: https://doi.org/10.1016/j.jhazmat.2010.10.116
Melgoza D, Peralta J, Hernández A. Comparative efficiencies of the decolourisation of Methylene Blue using Fenton's and PhotoFenton's reactions. Photochem and Photobiol Scien[internet]. 2009 [citado 21 nov 2021]; 8:596-9. Disponible en: https://doi.org/10.1039/b817287k