Publication: The high temperature tribological behavior of an iron oxide strengthened iron compound obtained from an industrial byproduct
Authors
Abstract (Spanish)
Abstract (English)
Extent
Collections
References
Eissa M, Ahmed A, El-Fawkhry M. Conversion of mill scale waste into valuable products via carbothermic reduction. J Met 2015;2015:1–9. https://doi.org/ 10.1155/2015/926028
Sustainable consumption and production – United Nations Sustainable Development, (n.d.). 〈https://www.un.org/sustainabledevelopment/sustainable -consumption-production/〉 (accessed November 15, 2021).
Política Nacional de Produccion ´ y Consumo Sostenible - Red de Desarrollo Sostenible de Colombia, (n.d.). 〈https://www.rds.org.co/es/recursos/politica-nac ional-de-produccion-y-consumo-sostenible〉 (accessed November 16, 2021).
Tirado Gonz´ alez JG, Reyes Segura BT, Esguerra-Arce J, Bermúdez Castaneda ˜ A, Aguilar Y, Esguerra-Arce A. An innovative magnetic oxide dispersion-strengthened iron compound obtained from an industrial byproduct, with a view to circular economy. J Clean Prod 2020;268:122362. https://doi.org/10.1016/j. jclepro.2020.122362.
Howson TE, Mervyn DA, Tien JK. Creep and stress rupture of a mechanically alloyed oxide dispersion and precipitation strengthened nickel-base superalloy. Metall Trans A 1980;11:1609–16. https://doi.org/10.1007/BF02654525.
Zhou Y, Gao Y, Wei S, Pan K, Hu Y. Preparation and characterization of Mo/Al2O3 composites. Int J Refract Met Hard Mater 2016;54:186–95. https://doi.org/ 10.1016/j.ijrmhm.2015.07.033.
Tu S. Emering to structural integrity technology for high-temperature applications. Front Mech Eng 2007:375–87.
Sista KS, Dwarapudi S, Nerune VP. Direct reduction recycling of mill scale through iron powder synthesis. ISIJ Int 2019;59:787–94. https://doi.org/10.2355/ isijinternational.ISIJINT-2018-628.
Askeland DR. The science and engineering of materials. Sci Eng Mater 1996. https://doi.org/10.1007/978-1-4613-0443-2.
Elhadi A, Bouchoucha A, Jomaa W, Zedan Y, Schmitt T, Bocher P. Study of surface wear and damage induced by dry sliding of tempered AISI 4140 steel against hardened AISI 1055 steel. Tribol Ind 2017;38:475–85.
Panin V, Kolubaev A, Tarasov S, Popov V. Subsurface layer formation during sliding friction. Wear 2001;249:860–7. https://doi.org/10.1016/S0043-1648(01) 00819-5.
Fleming JR, Suh NP. Mechanics of crack propagation in delamination wear. Wear 1977;44:39–56. https://doi.org/10.1016/0043-1648(77)90083-7.
Study of surface wear and damage induced by dry sliding of tempered, (n.d.).
Zambrano OA, Gomez ´ JA, Coronado JJ, Rodríguez SA. The sliding wear behaviour of steels with the same hardness. Wear 2019;418–419:201–7. https://doi.org/ 10.1016/j.wear.2018.12.002.
Surface film formation and metallic wear, Wear. 1 (1957) 163. 〈https://doi. org/10.1016/0043–1648(57)90019–4.
Bahrami A, Soltani N, Pech-Canul MI, Guti´errez CA. Development of metal-matrix composites from industrial/agricultural waste materials and their derivatives. Crit Rev Environ Sci Technol 2016;46:143–208. https://doi.org/10.1080/ 10643389.2015.1077067.
Deaquino-Lara R, Soltani N, Bahrami A, Guti´errez-Castaneda ˜ E, García-Sanchez ´ E, Hernandez-Rodríguez MAL. Tribological characterization of Al7075-graphite composites fabricated by mechanical alloying and hot extrusion. Mater Des 2015; 67:224–31. https://doi.org/10.1016/j.matdes.2014.11.045.
Bahrami A, Pech-Canul MI, Gutierrez CA, Soltani N. Effect of rice-husk ash on properties of laminated and functionally graded Al/SiC composites by one-step pressureless infiltration. J Alloy Compd 2015;644:256–66. https://doi.org/ 10.1016/j.jallcom.2015.04.194.
Soltani N, Jafari Nodooshan HR, Bahrami A, Pech-Canul MI, Liu W, Wu G. Effect of hot extrusion on wear properties of Al–15wt% Mg2Si in situ metal matrix composites. Mater Des 2014;53:774–81. https://doi.org/10.1016/j. matdes.2013.07.084.
Bahrami A, Soltani N, Pech-Canul M. Effect of sintering temperature on tribological behavior of Ce-TZP/Al 2 O 3 -aluminum nanocomposite. J Compos Mater 2015;49: 3507–14. https://doi.org/10.1177/0021998314567010.
Agrawal R, Mukhopadhyay A. Optimization of wear performance and COF of AISI 1040 steel using grey relational analysis. Mater Today Proc 2022. https://doi.org/ 10.1016/j.matpr.2022.03.665.
Li X, Sosa M, Olofsson U. A pin-on-disc study of the tribology characteristics of sintered versus standard steel gear materials. Wear 2015;340–341:31–40. https:// doi.org/10.1016/j.wear.2015.01.032.
Conshohocken W. Standard test method for wear testing with a pin-on-disk apparatus 1. Wear V 2007:1–5.
King PC, Reynoldson RW, Brownrigg A, Long JM. Pin on disc wear investigation of nitrocarburised H13 tool steel. Surf Eng 2005;21:99–106. https://doi.org/ 10.1179/174329405×40911.
Federici M, Straffelini G, Gialanella S. Pin-on-disc testing of low-metallic friction material sliding against HVOF coated cast iron: modelling of the contact temperature evolution. Tribol Lett 2017;65:121. https://doi.org/10.1007/s11249- 017-0904-y
Munagala VNV, Chromik RR. The role of metal powder properties on the tribology of cold sprayed Ti6Al4V-TiC metal matrix composites. Surf Coat Technol 2021;411: 126974. https://doi.org/10.1016/j.surfcoat.2021.126974.
Poquillon D, Baco-Carles V, Tailhades P, Andrieu E. Cold compaction of iron powders - relations between powder morphology and mechanical properties: Part II. Bending tests: results and analysis. Powder Technol 2002;126:75–84. https:// doi.org/10.1016/S0032-5910(02)00035-9.
Korim NS, Hu L. Study the densification behavior and cold compaction mechanisms of solid particles-based powder and spongy particles-based powder using a multi-particle finite element method. Mater Res Express 2020;7. https:// doi.org/10.1088/2053-1591/ab8cf6.
Vergne C, Boher C, Levaillant C, Gras R. Analysis of the friction and wear behavior of hot work tool scale: application to the hot rolling process. Wear 2001;250: 322–33. https://doi.org/10.1016/S0043-1648(01)00598-1.
Liang C, Wang C, Zhang K, Tan H, Liang M, Xie Y, et al. The study of mechanical and tribology properties at room- and high-temperature in a (NiCoFe)86.5(AlTi)12 (WMoV)1.5 high-entropy alloy. J Alloy Compd 2022;911:165082. https://doi.org/ 10.1016/j.jallcom.2022.165082.
Serebriakov I, Puchi-Cabrera ES, Dubar L, Moreau P, Meresse D, BarberaSosa JGLa. Friction analysis during deformation of steels under hot-working conditions. Tribol Int 2021;158:106928. https://doi.org/10.1016/j. triboint.2021.106928.
Lancaster JK. The influence of temperature on metallic wear. Proc Phys Soc Sect B 1957;70:112–8. https://doi.org/10.1088/0370-1301/70/1/316.