Publication: Detección de Anomalías en la Oferta de Educación Superior en Colombia usando Autocodificadores Convolucionales de Grafos
Authors
Abstract (Spanish)
Abstract (English)
Director
Advisors/Directors
Extent
Al consultar y hacer uso de este recurso, está aceptando las condiciones de uso establecidas por los autores.
Collections
References
Asif, R., Merceron, A., Ali, S. A., & Haider, N. G. (2017). Analyzing undergraduate students' performance using educational data mining. Computers & Education, 113, 177-194. https://doi.org/10.1016/j.compedu.2017.05.007
Bohórquez, G., Sánchez, J. A., & Garay, L. (2017). La política educativa en torno a la masificación de la educación superior y su relación con el abandono universitario en Colombia. Revista de Administración Pública, http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S012272382019000100109
Chong Guan, J., Mou, J., & Jiang, Z. (2020). Artificial intelligence innovation in education: A twenty-year data-driven historical analysis. International Journal of Innovation Studies, 4(4), 134-147. https://doi.org/10.1016/j.ijis.2020.09.001
Fajardo Vanegas, F. (2023). Igualdad de oportunidades y crimen: El efecto de Ser Pilo Paga en la incidencia de actividades criminales. Documento CEDE, 37. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4662640
González-Espitia, C. G. (2023). Diferencias por género en el acceso a la educación superior en Colombia (2001-2019). Revista Colombiana de Educación, 88, 185-210. https://doi.org/10.17227/rce.num88-13523
Mengash, H. A. (2020). Using data mining techniques to predict student performance to support decision making in university admission systems. IEEE Access, 8, 5546255470. https://doi.org/10.1109/ACCESS.2020.2981905
Hamilton, W. L., Ying, Z., & Leskovec, J. (2017). Inductive representation learning on large graphs. In Advances in Neural Information Processing Systems (pp. 1025-1035).
IBM. (2024). CRISP-DM help overview. Recuperado de https://www.ibm.com/docs/es/spss-modeler/saas?topic=dm-crisp-help-overview
Kaur, H., & Singh, G. (2016). Prediction of student performance using clustering approach. Proceedings of the International Conference on Computing for Sustainable Global Development (INDIACom), 1556-1562.
Luan, H., Geczy, P., Lai, H., Gobert, J., Yang, S. J. H., Ogata, H., Baltes, J., Guerra, R., Li, P., & Tsai, C.-C. (2020). Challenges and future directions of big data and artificial intelligence in education. Frontiers in Psychology, 11, 580820. https://doi.org/10.3389/fpsyg.2020.580820
Majeed, A.; Rauf, I. Graph Theory: A Comprehensive Survey about Graph Theory Applications in Computer Science and Social Networks. Inventions 2020, 5, 10. https://doi.org/10.3390/inventions5010010
Melo-Becerra, L. A., Ramos-Forero, J. E., & Hernández-Santamaría, P. O. (2017). La educación superior en Colombia: situación actual y análisis de eficiencia. Desarrollo y Sociedad, 78, 59-111. https://doi.org/10.13043/DYS.78.2
NetworkX: Hagberg, A. A., Schult, D. A., & Swart, P. J. (2008). Exploring network structure, dynamics, and function using NetworkX. Proceedings of the 7th Python in Science Conference (SciPy2008), 11–15. Documentación oficial de NetworkX: NetworkX Developers. (2023). NetworkX documentation. Recuperado de https://networkx.org/documentation/stable/
Sanjay Kumar, Abhishek Mallik, Anavi Khetarpal, B.S. Panda, Influence maximization in social networks using graph embedding and graph neural network, Information Sciences, Volume 607, 2022, Pages 1617-1636, ISSN 0020-0255, https://doi.org/10.1016/j.ins.2022.06.075.
Tüzen, A., & Yaslan, Y. (2024). Graph autoencoder with community neighborhood network. In A. Bennour, A. Bouridane, & L. Chaari (Eds.), Intelligent Systems and Pattern Recognition. ISPR 2023. Communications in Computer and Information Science (Vol. 1941). Springer, Cham. https://doi.org/10.1007/978-3-031-46338-9_19
Vincent, P., Larochelle, H., Bengio, Y., & Manzagol, P.-A. (2008). Extracting and composing robust features with denoising autoencoders. Proceedings of the 25th International Conference on Machine https://doi.org/10.1145/1390156.1390294
Boris Lorbeer and Max Botler "Anomaly detection with partitioning overfitting autoencoder ensembles", Proc. SPIE 12084, Fourteenth International Conference on Machine Vision (ICMV 2021), 1208404 (4 March 2022); https://doi.org/10.1117/12.2622453
Opsahl, T., Agneessens, F., & Skvoretz, J. (2010). Node centrality in weighted networks: Generalizing degree and shortest paths. Social Networks, 32(3), 245-251. https://doi.org/10.1016/j.socnet.2010.03.006A. Slim, G. L. Heileman, W. Al-Doroubi and C. T. Abdallah, "The Impact of Course Enrollment Sequences on Student Success," 2016 IEEE 30th International Conference on Advanced Information
Vincent, P., Larochelle, H., Bengio, Y., & Manzagol, P.-A. (2008). Extracting and composing robust features with denoising autoencoders. Proceedings of the 25th International Conference on Machine Learning (ICML), 1096-1103. https://doi.org/10.1145/1390156.1390294
He, Y., & Wai, H.-T. (2022). Detecting central nodes from low-rank excited graph signals via structured factor analysis. IEEE Transactions on Signal Processing, 70, 2416-2430. https://doi.org/10.1109/TSP.2022.3167525
Zhao, T., Liu, Y., & Song, L. (2020). Graph anomaly detection and description: A survey. ACM Computing Surveys, 53(5), 1-37.