Publication: Estudio de modelos de aprendizaje automático para Tuberculosis en el proceso de Drug Discovery
Authors
Authors
Abstract (Spanish)
Abstract (English)
Director
Advisors/Directors
Extent
Collections
Collections
References
A. Natarajan, P. Beena, A. V. Devnikar y S. Mali, «A systemic review on tuberculosis,» Indian Journal of Tuberculosis, vol. 67, n.o 3, págs. 295-311, 2020
A. Zabaleta y C. Llerena, «Extensively resistant tuberculosis, Colombia, 2006-2016,» Biomedica, vol. 39, n.o 4, págs. 707-714, 2019,
D. Mendez, A. Gaulton, A. P. Bento et al., «ChEMBL: towards direct deposition of bioassay data,» Nucleic Acids Research, vol. 47, n.o D1, págs. D930-D940, nov. de 2018.
C. Silva, V. Bermúdez, N. Arraiz, F. Bermúdez, M. Rodríguez y L. V. E. Leal., «Fármacos de primera línea utilizados en el tratamiento de la tuberculosis,» Archivos Venezolanos de Farmacología y Terapéutica, 2007.
N. A. Shaik, K. R. Hakeem, B. Banaganapalli y R. Elango, Essentials of Bioinformatics Volume II, In Silico Life Sciences: Medicine. Springer, 2019.
G. Singh, P. Kesharwani y A. K. Srivastava, «Tuberculosis treated by multiple drugs: An overview,» Current Drug Delivery, vol. 15, n.o 3, págs. 312-320, 2018
C. E. Rincón-Torres, V. Rubio, C. Castro et al., «National Network for Knowledge Management, Research, and Innovation in Tuberculosis in Colombia,» Revista Panamericana de Salud Publica/Pan American Journal of Public Health, vol. 45, 2021
J. G. Rodríguez-Castillo, C. Llerena, L. Argoty-Chamorro et al., «Population structure of multidrug-resistant Mycobacterium tuberculosis clinical isolates in Colombia,» Tuberculosis, vol. 125, 2020
A. Zabaleta, C. Llerena y A. Valbuena, «Tuberculosis resistente en menores de 15 años, Colombia 2010-2015,» Biomedica, vol. 39, n.o 2, págs. 330-338, 2019
S. Macalino, J. B. Billones, V. G. Organo y Carrillo, «In Silico Strategies in Tuberculosis Drug Discovery.,» Basel, Switzerland, vol. 25, n.o 3, 2020
S. Swaminathan, J. C. Sundaramurthi, A. N. Palaniappan y S. Narayanan, «Recent developments in genomics, bioinformatics and drug discovery to combat emerging drugresistant tuberculosis,» Tuberculosis, vol. 101, págs. 31-40, 2016
G. Mugumbate, B. Nyathi, A. Zindoga y G. Munyuki, «Application of Computational Methods in Understanding Mutations in Mycobacterium tuberculosis Drug Resistance,» Frontiers in Molecular Biosciences, vol. 8, 2021
X. Chen, J. Sa, M. Li e Y. Zhou, «Combined prediction model of tuberculosis based on generalized regression neural network,» en Proceedings of 2020 IEEE International Conference on Artificial Intelligence and Computer Applications, ICAICA 2020, Cited By :2, 2020, págs. 577-581.
K. Ghazvini, M. Yousefi, F. Firoozeh y S. Mansouri, «Predictors of tuberculosis: Application of a logistic regression model,» Gene Reports, vol. 17, 2019
R. S. Wallis, C. Wang, D. Meyer y N. Thomas, «Month 2 Culture Status and Treatment Duration as Predictors of Tuberculosis Relapse Risk in a Meta-Regression Model,» PLoS ONE, vol. 8, n.o 8, 2013
M. Hassam, J. A. Shamsi, A. Khan, A. Al-Harrasi y R. Uddin, «Prediction of inhibitory activities of small molecules against Pantothenate synthetase from Mycobacterium tuberculosis using Machine Learning models,» Computers in biology and medicine, vol. 145, 2022
T. R. Lane, F. Urbina, L. Rank et al., «Machine Learning Models for Mycobacterium tuberculosis in Vitro Activity: Prediction and Target Visualization,» Molecular Pharmaceutics, vol. 19, n.o 2, págs. 674-689, 2022
Y. Hu, Z. Morichaud, S. Chen, J.-P. Leonetti y K. Brodolin, «Mycobacterium tuberculosis RBPA protein is a new type of transcriptional activator that stabilizes the A -containing RNA polymerase holoenzyme,» Nucleic Acids Research, vol. 40, n.o 14, págs. 6547-6557, 2012
M. A. Isa, M. B. Abubakar, M. M. Mohammed, M. M. Ibrahim y F. A. Gubio, «Identification of potent inhibitors of ATP synthase subunit C (AtpE) from mycobacterium tuberculosis using in silico approach,» Heliyon, vol. 7, n.o 12, 2021
J. L. Houghton, T. Biswas, W. Chen, O. V. Tsodikov y S. Garneau-Tsodikova, «Chemical and structural insights into the regioversatility of the aminoglycoside acetyltransferase Eis,» European journal of chemical biology, vol. 7, n.o 14, 2013
C. W. Yap, «Padel-Descriptor: An Open Source Software to Calculate Molecular Descriptors and Fingerprints,» Journal of Computational Chemistry, vol. 32, n.o 7, 2010
C. A. Lipinski, F. Lombardo, B. W. Dominy y P. J. Feeney, «Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings,» Advanced Drug Delivery Reviews, vol. 46, n.o 1, págs. 3-26, 2001
P. R. Duchowicz, C. Talevi A.and Bellera, E. A. Castrp y L. E. Buno-Lanch, «Estudio QSPR Sobre Solubilidades Acuosas de Sustancias Orgánicas,» XXVI Congreso Argentino de Química Dr. Ángel del Carmen Devia, 2006.
C. Rauch, «Toward a mechanical control of drug delivery. On the relationship between Lipinski’s 2nd rule and cytosolic pH changes in doxorubicin resistance levels in cancer cells: A comparison to published data,» European Biophysics Journal, vol. 38, n.o 7, págs. 829-846, 2009
D. S. Diningrat, A. N. Sari, N. S. Harahap y Kusdianti, «IN SILICO STUDY OF THE TOXICITY AND ANTIVIRAL ACTIVITY PREDICTION OF JAMBLANG (Syzygium cumini) LEAVES ESSENTIAL OIL AS ACE2 INHIBITOR,» Pharmacologyonline, vol. 3, págs. 1334-1351, 2021
S. Hosseini, S. Ketabi y G. Hasheminasab, «QSAR study of antituberculosis activity of oxadiazole derivatives using DFT calculations,» Journal of Receptors and Signal Transduction, 2022.
S. Singh, K. R. Ramkumar y A. Kukkar, «Machine Learning Techniques and Implementation of Different ML Algorithms,» en 2021 2nd Global Conference for Advancement in Technology, GCAT 2021, 2021.
S. Singh, K. R. Ramkumar y A. Kukkar, Python Machine Learning: Unlock deeper insights into Machine Leaning with this vital guide to cutting-edge predictive analytics. 2015
F. Pedregosa, G. Varoquaux, A. Gramfort et al., «Scikit-learn: Machine Learning in Python,» Journal of Machine Learning Research, vol. 12, págs. 2825-2830, 2011
J. Shao, «Linear model selection by cross-validation,» Journal of the American Statistical Association, vol. 88, n.o 422, págs. 486-494, 1993