Publication: Exploración del impacto de los sentimientos en Twitter sobre el precio del bitcoin mediante procesamiento de lenguaje natural, modelos de regresión y aprendizaje automático
Authors
Abstract (Spanish)
Abstract (English)
Director
Advisors/Directors
Extent
El uso de este documento implica la obligación de reconocer la autoría de las autoras y citar la fuente conforme a las normas de publicación académica.
Collections
References
Díaz, C., Mayorga, R., Amaya, A., & Salazar, R. (2022). La importancia de las criptomonedas y su impacto en los mercados fi nancieros internacionales a partir de la evolución del bitcoin. Realidad Empresarial, 10-25.
Alperin, J., Gomez, C., & Haustein, S. (2019). Identifying diffusion patterns of research articles on Twitter: A case study of online engagement with open access articles. Public Understanding of Science, 2 -18.
Ardia, D., & Bluteau, K. (2023). The Role of Twitter in Cryptocurrency Pump-and-Dumps. Universit´e de Sherbrooke, 2-33.
Bartolome, A., Martín, S., & Atañes, R. (2025). Análisis de la inversión en criptomonedas con metodología de análisis de sentimiento: una revolución digital al descubierto.
Bollen, J., Mao, H., & Zeng, X.-J. (2011). Twitter mood predicts the stock market. Journal of Computational Science, 1-8. doi:https://doi.org/10.1016/j.jocs.2010.12.007
Box, G. E., Jenkins, G. M., & Reinsel, G. C. (2015). Time Series Analysis: Forecasting and Control (5th ed.). Wiley
Chen, B. (31 de January de 2023). Emojis Aid Social Media Sentiment Analysis: Stop Cleaning Them Out! Obtenido de Towards Data Science: https://towardsdatascience.com/emojisaid-social-media-sentiment-analysis-stop-cleaning-them-out-bb32a1e5fc8e
Christiano, P., Leike, J., Brown, T., Martic, M., Legg, S., & Amodei, D. (2017). Deep Reinforcement Learning from Human Preferences. Advances in Neural Information Processing Systems, volumen 30, (págs. 1-17).
Costin , A., Diaconita, V., & Vasilica, S. (2023). Bitcoin volatility in bull vs. bear marketinsights from analyzing on-chain metrics and Twitter posts. PeerJ Computer Science, 1-31.
Delgadillo, J., Kinyua, J., & Mutigwe, C. (2024). FinSoSent: Advancing Financial Market Sentiment Analysis through Pretrained Large Language Models. Big Data and Cognitive Computing, 8(87). doi:https://doi.org/10.3390/bdcc8080087
Díaz Pérez, M. T., Toro Martínez, B. S., & Álvarez Agudelo, A. K. (2019). Bitcoin como bien intangible en Estados Unidos. Medellín: Institución Unversitaria Esumer. Obtenido de chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://repositorio.esumer.edu.co/server/api/core/bitstreams/9560c033-51b7-4106-ba07-6c4e78ad6ad3/content
Enders, W. (2014). Applied econometric time series (4th ed.). Wiley.
Fernando, J. (6 de Agosto de 2024). Moving Average (MA): Purpose, Uses, Formula, and Examples. Obtenido de Investopedia: https://www.investopedia.com/terms/m/movingaverage.asp
García Cantos, J. F. (2025). Evaluación automática de modelos de lenguaje mediante validación cruzada con LLMs. Obtenido de https://e-spacio.uned.es/entities/publication/3db9ab19-e25d-4a1f-9677-b2f2219f0984/full
Géron, A. (2019). Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow(2nd ed.). O'Reilly Media.
HuggingFace. (2025). Obtenido de cardiffnlp/twitter-roberta-base-sentiment: https://huggingface.co/cardiffnlp/twitter-roberta-base-sentiment
Katsiampa, P. (2017). Volatility estimation for Bitcoin: A comparison of GARCH models. Economics Letters, 158, 3-6.
Khyani, D., BS , S., NM, N., & B M, D. (2020). An Interpretation of Lemmatization and Stemming in Natural Language Processing . Journal of University of Shanghai for Science and Technology, 350 -357
Lewis, D. (26 de agosto de 2022). What is a Good Engagement Rate on Twitter? Scrunch. Obtenido de Scrunch: https://scrunch.com/blog/what-is-a-good-engagement-rate-ontwitter
López, C. E. (2023). Estudio Informativo de los Mercados de Donaciones Cripto a Nivel Global. Universidad Europea Madrid , 1-87.
Marketing Zone Icesi. (17 de Marzo de 2023). Marketing Zone | Universidad ICESI. Obtenido de Marketing Zone | Universidad ICESI: https://www.icesi.edu.co/marketingzone/estaes-la-historia-de-twitter-la-app-que-revoluciono-la-comunicacion-en-140- caracteres/?utm_source=chatgpt.com
Montgomery, D. C., Peck, E. A., & Vining, G. G. (2021). Introduction to Linear Regression Analysis (6th ed.). Wiley.
Mulla, S., Ghorpade, V., Mulani, J., & Mulla, T. (2025). Exploring the Variations Among ARIMA Models for Time Series Forecasting of Data Breaches. Data Intelligence, 7(1), 40 69. doi:https://doi.org/10.3724/2096-7004.di.2024.0070
Padilla Méndez, L., Peréz Uribe, R., Castro Beltrán, Á., Serrato Lopez, D., & Navarrete Candamil, K. (2018). Las Criptomonedas y su Impacto en la Economía Colombiana. Universidad EAN , 1-36.
Qi, Z., Feng, Y., Wang, S., & Li, C. (2025). Enhancing hydropower generation Predictions: A comprehensive study of XGBoost and Support Vector Regression models with advanced optimization techniques. Ain Shams Engineering Journal, 16(1). doi:https://doi.org/10.1016/j.asej.2024.103206
Rasmussen, C. E., & Williams, C. K. (2006). Gaussian processes for machine learning. MIT Press.
Robert, D. H., Burstein, F., Urquhart, D., & Cicuttini, F. (2021). Investigating Individuals' Perceptions Regarding the Context Around the Low Back Pain Experience: Topic Modeling Analysis of Twitter Data. doi:10.2196/26093
Salaberry, N. (2020). Análisis de contenido en Twitter y el aislamiento social obligatorio. 7(1), 1-15. Obtenido de https://www.economicas.uba.ar/wpcontent/uploads/2016/04/Salaberry-Natalia.pdf
Saura, J., Reyes, A., & Palos, P. (2018). Un Análisis de Sentimiento en Twitter con Machine Learning: Identificando el sentimiento sobre las ofertas de #BlackFriday. Revista Espacios, 39(42), 16. Obtenido de https://www.revistaespacios.com/a18v39n42/18394216.html
Tweepy.org. (2024). Tweepy. Obtenido de Tweepy: https://www.tweepy.org/
Vora, G. (2015). Cryptocurrencies: Are Disruptive Financial Innovations Here? Scientific Research Publishing Inc, 816-832.
Wooldridge, J. M. (2019). Introductory Econometrics: A Modern Approach (6th ed.). Cengage Learning.
Yuliansyah, H., Mulasari, S. A., Sulistyawati, S., Ghozali, F. A., & Sudarsono, B. (2024). Sentiment Analysis of the Waste Problem based on YouTube comments using VADER and Deep Translator. 8(1), 663-673. Obtenido de https://pdfs.semanticscholar.org/6e4f/247402d66a7176851aa9cbeb0b431a9b41dc.pdf
Zhang, G. P. (2003). Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing, 50, 159-175.
Zhang, W., & Skiena, S. (2010). Trading Strategies to Exploit Blog and News Sentiment. Proceedings of the International AAAI Conference on Web and Social Media, 4(1), 375-378. doi:https://doi.org/10.1609/icwsm.v4i1.14075.