Publication: Predictive Modeling for Seizure Detection in Pharmacoresistant Epilepsy: a machine learning approach
Abstract (Spanish)
Abstract (English)
Extent
Collections
Collections
References
[1] V. Pandya, U. P. Shukla, and A. M. Joshi, “Novel features extraction from EEG signals for epilepsy detection using machine learning model”, IEEE Sens. Lett., vol. 7, no. 10, pp. 1–4, 2023.
[2] Guttag, J. (2010). CHB-MIT Scalp EEG Database (version 1.0.0). PhysioNet. https://doi.org/10.13026/C2K01R.
[3] Goldberger, A., Amaral, L., Glass, L., Hausdorff, J., Ivanov, P. C., Mark, R., ... & Stanley, H. E. (2000). PhysioBank, PhysioToolkit, and PhysioNet: Components of a new research resource for complex physiologic signals. Circulation [Online], 101 (23), pp. e215–e220.
[4] N. Kannathal, M. L. Choo, U. R. Acharya, and P. K. Sadasivan, “Entropies for detection of epilepsy in EEG”, Comput. Methods Programs Biomed., vol. 80, no. 3, pp. 187–194, 2005.
[5] C. Alexandre Teixeira et al., “Epileptic seizure predictors based on computational intelligence techniques: a comparative study with 278 patients”, Comput. Methods Programs Biomed., vol. 114, no. 3, pp. 324–336, 2014.
[6] F. A. Escobar-Ipuz, A. M. Torres, M. A. García-Jiménez, C. Basar, J. Cascón, and J. Mateo, “Prediction of patients with idiopathic generalized epilepsy from healthy controls using machine learning from scalp EEG recordings”, Brain Res., vol. 1798, no. 148131, p. 148131, 2023.
[7] S. Jukic, D. Keco, and J. Kevric, “Majority vote of ensemble machine learning methods for real-time epilepsy prediction applied on EEG pediatric data”, TEM J., pp. 313–318, 2018.
[8] R. Elakkiya, “Machine learning based intelligent automated neonatal epileptic seizure detection”, J. Intell. Fuzzy Syst., pp. 1–9, 2021.
[9] A. Miltiadous et al., “Machine learning algorithms for epilepsy detection based on published EEG databases: A systematic review”, IEEE Access, vol. 11, pp. 564–594, 2023.
[10] N. Rehab, Y. Siwar, and Z. Mourad, “Machine learning for epilepsy: A comprehensive exploration of novel EEG and MRI techniques for seizure diagnosis”, J. Med. Biol. Eng., vol. 44, no. 3, pp. 317–336, 2024.
[11] P. K. Sethy, M. Panigrahi, K. Vijayakumar, and S. K. Behera, “Machine learning based classification of EEG signal for detection of child epileptic seizure without snipping”, Int. J. Speech Technol., vol. 26, no. 3, pp. 559–570, 2023.
[12] S. Muhammad Usman, S. Khalid, and M. H. Aslam, “Epileptic seizures prediction using deep learning techniques”, IEEE Access, vol. 8, pp. 39998–40007, 2020.
[13] B. Deepa and K. Ramesh, “Epileptic seizure detection using deep learning through min max scaler normalization”, Int. J. Health Sci. (IJHS), pp. 10981–10996, 2022.
[14] A. K. Jaiswal and H. Banka, “Epileptic seizure detection in EEG signal using machine learning techniques”, Australas. Phys. Eng. Sci. Med., vol. 41, no. 1, pp. 81–94, 2018.
[15] S. Ali, Sunanda, and Hemalatha, “Epilepsy Prediction using Machine Learning”, in 2022 4th International Conference on Artificial Intelligence and Speech Technology (AIST), 2022.
[16] H. Daoud and M. A. Bayoumi, “Efficient epileptic seizure prediction based on deep learning”, IEEE Trans. Biomed. Circuits Syst., vol. 13, no. 5, pp. 804–813, 2019.
[17] Abhishek, S. Kumar, N. Mohan, and Soman, “EEG based automated detection of seizure using machine learning approach and traditional features”, Expert Syst. Appl., vol. 251, no. 123991, p. 123991, 2024.
[18] R. Rahman et al., “Comprehensive analysis of EEG datasets for epileptic seizure prediction”, in 2021 IEEE International Symposium on Circuits and Systems (ISCAS), 2021.
19] K. Han, C. Liu, and D. Friedman, “Artificial intelligence/machine learning for epilepsy and seizure diagnosis”, Epilepsy Behav., vol. 155, no. 109736, p. 109736, 2024.
[20] E. Ali, M. Angelova, and C. Karmakar, “Epileptic seizure detection using CHB-MIT dataset: The overlooked perspectives”, R. Soc. Open Sci., vol. 11, no. 5, p. 230601, 2024.