Publication: Evaluación teórica de la estabilidad de la batería ION Litio, mediante la incorporación de grafito en el cátodo
Files
Files
Abstract (Spanish)
Extent
Collections
Collections
References
Anil, M., & Rejikumar, G. (2023). Life cycle analysis of lithium-ion batteries: An assessment of sustainability impact. In 2023 International Conference for Advancement in Technology (ICONAT) (pp. 1-5). IEEE. https://doi.org/10.1109/ICONAT57137.2023.10080437
Beguin, M., Epron, E., & Bruce, P. G. (2014). Graphite electrodes for supercapacitors. Electrochimica Acta, 132, 21-25. https://doi.org/10.1016/j.electacta.2014.03.046
Beltrop, K., Meister, P., Klein, S, Heckman, A., Grünebaum, M., Wiemhöfer, H, Winter, M, Placke, T. Does size really matter? New insights into anion intercalation behavior in a graphite-based positive electrode for dual-ion batteries. http://refhub.elsevier.com/S2542-4351(18)30406-9/sref27
Deng, J., Bae, C., Marcicki, J., et al. (2018). Safety modelling and testing of lithium-ion batteries in electrified vehicles. Nature Energy, 3(3), 261-266. https://doi.org/10.1038/s41560-018-0122-3
Fang, H. (2021). Challenges with the ultimate energy density with Li-ion batteries. IOP Conference Series: Earth and Environmental Science, 781(4), 042023. https://doi.org/10.1088/1755-1315/781/4/042023
Gaines, L., Sullivan, J., & Burnham, A. (2011, January). Paper No. 11-3891: Life-cycle analysis for lithium-ion battery production and recycling. Presented at the Transportation Research Board 90th Annual Meeting, Washington, DC.
Geim, A. K. (2009). Graphene: Status and prospects. Science, 324(5934), 1530-1534. https://doi.org/10.1126/science.1158877
Goodenough, J. B., & Kim, Y. (2010). Challenges for rechargeable Li batteries. Chemistry of Materials, 22(3), 587-603. https://doi.org/10.1021/cm901452z
Grandview Research. (2022). Lithium-Ion Battery Market Size & Forecast, 2022-2027. https://www.grandviewresearch.com/press-release/global-lithium-ion-battery-market
Grandview Research. (2023). Long-Duration Lithium-Ion Battery Materials Market Size & Forecast, 2028. https://www.grandviewresearch.com/press-release/global-lithium-ion-battery-market
Han, X., Xiang, G., Dou, Y., Zhang, Q., Shi, D., & Yang, Y. (2022). Cyclohexanehexone-assisted one-step ball-milling of graphite to graphene composites as cathodes for lithium-ion batteries. Electrochimica Acta, 436, 141449. https://doi.org/10.1016/j.electacta.2022.141449
He, S., Ma, Y., Maulik, G., Jellicoe, M., Nag, A., Powell, W., Deng, S., Fang, J., & Wu, Y. (2024). A review on graphene-based sensors for tactile applications. Sensors and Actuators A: Physical. https://doi.org/10.1016/j.sna.2024.115363
Kharlamova, M. V., & Kramberger, C. (2023). Electrochemistry of carbon materials: Progress in Raman spectroscopy, optical absorption spectroscopy, and applications. Nanomaterials, 13(4), 640. https://doi.org/10.3390/nano13040640
Kravchyk, K. V., & Kovalenko, M. V. (2019). Rechargeable Dual-Ion Batteries with Graphite as a Cathode: Key Challenges and Opportunities. Advanced Energy Materials, 9(19), 1901749. https://doi.org/10.1002/aenm.201901749
Landi, B. J., Ganter, M. J., Cress, C. D., DiLeo, R. A., & Raffaelle, R. P. (2009). Carbon nanotubes for lithium ion batteries. Energy & Environmental Science, 2(6), 638-654. https://doi.org/10.1039/b904116h
Matsuo, Y., et al. (2018). Journal of the Electrochemical Society, 165(11), A2409. https://doi.org/10.1149/2.0131811jes
Mizushima, K., Jones, P. C., Wiseman, P. J., & Goodenough, J. B. (1980). LixCoO2 (0< x< 1): A new cathode material for batteries of high energy density. Materials Research Bulletin, 15(6), 783-789. https://doi.org/10.1016/0025-5408(80)90012-4
Mordor Intelligence. (2023). High Safety Lithium Ion Battery Market - Industry Report. https://www.mordorintelligence.com/industry-reports/lithium-ion-battery-market
Nitta, N., Wu, F., Lee, J. T., & Yushin, G. (2015). Li-ion battery materials: present and future. Materials Today, 18(5), 252-264. https://doi.org/10.1016/j.mattod.2014.10.040
Placke, T., Heckmann, A., Schmuch, R., Meister, P., Beltrop, K., & Winter, M. (2018). Perspective on Performance, Cost, and Technical Challenges for Practical Dual-Ion Batteries. Joule, 2. https://doi.org/10.1016/j.joule.2018.09.003
Placke, T., Fromm, O., Franz, S., Bieker, P., Rothermel, S., Meyer, H., Passerini.S, Winter M. Reversible intercalation of bis(trifluoromethanesulfonyl)imide anions from an ionic liquid electrolyte into graphite for cells high performance dual ion. From the journal of the electrochemical society https://iopscience.iop.org/journal/1945-7111
Placke, T., Fromm, O., Franz, S., Bieker, P., Rothermel, S., Meyer, H., Passerini.S, Winter M. Dual-ion Cells Based on Anion Intercalation into Graphite from Ionic Liquid-Based Electrolytes. https://doi.org/10.1524/zpch.2012.0222
Tarascon, J. M., & Armand, M. (2001). Issues and challenges facing rechargeable lithium batteries. Nature, 414(6861), 359-367. https://doi.org/10.1038/35104644
Wang, G., Shen, X., Yao, J., & Park, J. (2009). Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon, 47(8), 2049-2053. https://doi.org/10.1016/j.carbon.2009.03.053
Whittingham, M. S. (2004). Lithium batteries and cathode materials. Chemical Reviews, 104(10), 4271-4302. https://doi.org/10.1021/cr020731c
Xu, K. (2004). Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chemical Reviews, 104(10), 4303-4418. https://doi.org/10.1021/cr030203g
Ye, Z. (2022). Performance of Lithium Ion Battery with Graphene Microstructure in Cathode. Journal of Physics: Conference Series, 2378, 012030. https://doi.org/10.1088/1742-6596/2378/1/012030
Zhao, Y., Xue, K., Tan, T., & Yu, D. Y. W. (2023). Thermal Stability of Graphite Electrode as Cathode for Dual-Ion Batteries. ChemSusChem, 16(4), e202201221. https://doi.org/10.1002/cssc.202201221