Publication: Revelando patrones arquitectónicos implícitos en Infraestructura como código a través de la transferencia de conocimiento de repositorio de código
Authors
Authors
Abstract (Spanish)
Director
Advisors/Directors
Extent
Collections
References
Ahmad, A., Jamshidi, P., Pahl, C., 2013. A framework for acquisi- tion and application of software architecture evolution knowledge URL
Alexander, C., Ishikawa, S., Silverstein, M., 1977. A Pattern Language: Towns, Buildings, Construction. Center for Environmental Structure Berkeley, Calif.: Center for Environmental Structure series, OUP USA
Alom, M.Z., Taha, T.M., Yakopcic, C., Westberg, S., Sidike, P., Nasrin, M.S., Hasan, M., Van Essen, B.C., Awwal, A.A.S., Asari, V.K., 2019. A state-of-the-art survey on deep learning theory and architectures. Electronics 8.
Alon, U., Brody, S., Levy, O., Yahav, E., 2019. code2seq: Generating sequences from structured representations of code.
Alon, U., Zilberstein, M., Levy, O., Yahav, E., 2018a. code2vec: Learning distributed representations of code.
Alon, U., Zilberstein, M., Levy, O., Yahav, E., 2018b. A general path-based repre- sentation for predicting program properties
Alzubaidi, L., Zhang, J., Humaidi, A.J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., J., S., Fadhel, M.A., Al-Amidie, M., Farhan, L., 2021. Review of deep learning: Concepts, cnn architectures, challenges, applications, future directions - journal of big data.
he future of cloud development - Ampt — getampt.com. https://www. getampt.com/blog/introducing-ampt/.
Aviv, I., Gafni, R., Sherman, S., Aviv, B., Sterkin, A., Bega, E., 2023. Infrastructure from code: The next generation of cloud lifecycle automation. IEEE Software 40, 42–49.
Babar, M., Gorton, I., Jeffery, R., 2005. Capturing and using software architec- ture knowledge for architecture-based software development, in: Fifth Interna- tional Conference on Quality Software (QSIC’05), pp. 169–176.
Becker, M., Liang, S., Frank, A., 2021. Reconstructing implicit knowledge with language models, in: Workshop on Knowledge Extraction and Integration for Deep Learning Architectures; Deep Learning Inside Out.
Borovits, N., Kumara, I., Krishnan, P., Palma, S.D., Di Nucci, D., Palomba, F., Tamburri, D.A., van den Heuvel, W.J., 2020. Deepiac: Deep learning-based lin- guistic anti-pattern detection in iac, in: Proceedings of the 4th ACM SIGSOFT In- ternational Workshop on Machine-Learning Techniques for Software-Quality Eval- uation,
Borovits, N., Kumara, I., Krishnan, P., Palma, S.D., Di Nucci, D., Palomba, F., Tamburri, D.A., van den Heuvel, W.J., 2020. Deepiac: Deep learning-based lin- guistic anti-pattern detection in iac, in: Proceedings of the 4th ACM SIGSOFT In- ternational Workshop on Machine-Learning Techniques for Software-Quality Eval- uation,
Briem, J.A., Smit, J., Sellik, H., Rapoport, P., 2019. Using distributed representation of code for bug detection.
Brock, A., Lim, T., Ritchie, J.M., Weston, N., 2017. Freezeout: Accelerate training by progressively freezing layers
McCandlish, S., Radford, A., Sutskever, I., Amodei, D., 2020. Language models are few-shot learners.
Fine-tuning convolutional neu- ral networks for fine art classification. Expert Systems with Applications
Within-project defect prediction of infrastructure-as-code using product and process metrics. IEEE Transactions on Software Engineering 48, 2086–2104
Dalla Palma, S., Di Nucci, D., Tamburri, D.A., 2020. Ansiblemetrics: A python library for measuring infrastructure-as-code blueprints in ansible.
De Lauretis, L., 2019. From monolithic architecture to microservices architecture, in: 2019 IEEE International Symposium on Software Reliability Engineering Work- shops
Du, X., Cai, Y., Wang, S., Zhang, L., 2016. Overview of deep learning, in: 2016 31st Youth Academic Annual Conference of Chinese Association of Automation
Fadlullah, Z.M., Tang, F., Mao, B., Kato, N., Akashi, O., Inoue, T., Mizutani, K., 2017. State-of-the-art deep learning: Evolving machine intelligence toward tomorrow’s intelligent network traffic control systems
Fehling, C., Leymann, F., Retter, R., Schupeck, W., Arbitter, P., 2014. Cloud computing patterns. 2014 ed., Springer, Vienna, Austria.
Feitosa, D., Penca, M.T., Berardi, M., Boza, R.D., Andrikopoulos, V., 2023. Mining for cost awareness in the infrastructure as code artifacts of cloud-based applica- tions: an exploratory study.
Feng, Z., Guo, D., Tang, D., Duan, N., Feng, X., Gong, M., Shou, L., Qin, B., Liu, T., Jiang, D., Zhou, M., 2020. Codebert: A pre-trained model for programming and natural languages.
Galassi, A., Lippi, M., Torroni, P., 2021. Attention in natural language processing. IEEE Transactions on Neural Networks and Learning Systems
Gamma, E., Helm, R., Larman, C., Johnson, R., Vlissides, J., 2005. Valuepack: Design Patterns:Elements of Reusable Object-Oriented Software with Applying UML and Patterns:An Introduction to Object-Oriented Analysis and Design and References 83 Iterative Development. Addison Wesle
Georgousis, S., Kenning, M.P., Xie, X., 2021. Graph deep learning: State of the art and challenges. IEEE Access 9, 22106–22140
Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y., 2014.
Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., Liu, T., Wang, X., Wang, G., Cai, J., Chen, T., 2018.
Guerriero, M., Garriga, M., Tamburri, D.A., Palomba, F., 2019. Adoption, support, and challenges of infrastructure-as-code: Insights from industry, in: 2019 IEEE International Conference on Software Maintenance and Evolution (ICSME)
Guo, D., Lu, S., Duan, N., Wang, Y., Zhou, M., Yin, J., 2022. Unixcoder: Unified cross-modal pre-training for code representation
Clement, C., Drain, D., Sundare- san, N., Yin, J., Jiang, D., Zhou, M., 2021. Graphcodebert: Pre-training code representations with data flow
Hao, W., Bie, R., Guo, J., Meng, X., Wang, S., 2018. Optimized cnn based image recognition through target region selection.
Hasan, M.M., Bhuiyan, F.A., Rahman, A., 2020. Testing practices for infrastructure as code, in: Proceedings of the 1st ACM SIGSOFT International Workshop on Languages and Tools for Next-Generation Testing, Association for Computing Machinery, New York, NY, USA. p. 7–12
Joshi, A.V., 2020. Amazon’s Machine Learning Toolkit: Sagemaker. Springer In- ternational Publishing, Cham. pp. 233–243. URL
Kagdi, H., Collard, M.L., Maletic, J.I., 2007. A survey and taxonomy of approaches for mining software repositories in the context of soft- ware evolution. Journal of Software Maintenance and Evolution: Re- search and Practice 19, 77–131.
Kaliyar, R.K., 2020. A multi-layer bidirectional transformer encoder for pre-trained word embedding: A survey of bert, in: 2020 10th International Conference on Cloud Computing, Data Science & Engineering (Confluence), pp. 336–340.
Karamanolakis, G., Mukherjee, S., Zheng, G., Awadallah, A.H., 2021. Self-training with weak supervision. CoRR abs/2104.05514
arras, T., Aila, T., Laine, S., Lehtinen, J., 2017. Progressive growing of gans for improved quality, stability, and variation. CoRR abs/1710.10196.
Keery, S., Harber, C., Young, M., 2019. Implementing Cloud Design Patterns for AWS: Solutions and design ideas for solving system design problems. Packt Pub- lishing, Limited
Kovalenko, V., Bogomolov, E., Bryksin, T., Bacchelli, A., 2019. Pathminer: A library for mining of path-based representations of code, in: 2019 IEEE/ACM 16th International Conference on Mining Software Repositories (MSR), pp. 13– 17
Land, L., Aurum, A., Handzic, M., 2001. Capturing implicit software engineering knowledge, in: Proceedings 2001 Australian Software Engineering Conference, pp. 108–114.
Linthicum, D.S., 2017. Cloud-native applications and cloud migration: The good, the bad, and the points between. IEEE Cloud Computing 4, 12–14
Liu, Y., Agarwal, S., Venkataraman, S., 2021. Autofreeze: Automatically freezing model blocks to accelerate fine-tuning
Maffort, C., Valente, M.T., Bigonha, M., Hora, A., Anquetil, N., Menezes, J., 2013. Mining Architectural Patterns Using Association Rules, in: International Con- ference on Software Engineering and Knowledge Engineering (SEKE’13), Boston, United States
Mistrik, I., Bahsoon, R., Ali, N., Heisel, M., Maxim, B., 2017. Software architecture for Big Data and the cloud.
Niu, C., Li, C., Ng, V., Ge, J., Huang, L., Luo, B., 2022. Spt-code: Sequence-to- sequence pre-training for learning source code representations, in: Proceedings of the 44th International Conference on Software Engineering, Association for Computing Machinery, New York, NY, USA. p. 2006–2018
Opdebeeck, R., Zerouali, A., Velázquez-Rodríguez, C., De Roover, C., 2021. On the practice of semantic versioning for ansible galaxy roles: An empiri- cal study and a change classification model. Journal of Systems and Software 182, 111059
Palangi, H., Deng, L., Shen, Y., Gao, J., He, X., Chen, J., Song, X., Ward, R., 2016. Deep sentence embedding using long short-term memory networks: Analysis and application to information retrieval. IEEE/ACM Transactions on Audio, Speech, and Language Processing 24, 694–707.
Perez., Q., Borgne., A.L., Urtado., C., Vauttier., S., 2021. Towards profiling runtime architecture code contributors in software projects, in: Proceedings of the 16th International Conference on Evaluation of Novel Approaches to Soft- ware Engineering
Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., 2019a. Language models are unsupervised multitask learners.
Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al., 2019b. Language models are unsupervised multitask learners. OpenAI blog 1, 9.
Rahman, A., Mahdavi-Hezaveh, R., Williams, L., 2019. A systematic mapping study of infrastructure as code research. Information and Software Technology 108, 65–77
The RedMonk Programming Language Rankings: Jan- uary 2023 — redmonk.com
Rühling Cachay, S., Boecking, B., Dubrawski, A., 2021. End-to-end weak supervi- sion, in: Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P., Vaughan, J.W. (Eds.), Advances in Neural Information Processing Systems, Curran Associates, Inc.. pp. 1845–1857
Salehinejad, H., Sankar, S., Barfett, J., Colak, E., Valaee, S., 2018. Recent advances in recurrent neural networks.
Savidis, A., Savvaki, K., 2021. Software architecture mining from source code with dependency graph clustering and visualization
Schmidt, F., MacDonell, S.G., Connor, A.M., 2014. An automatic architecture re- construction and refactoring framework, in: International Conference on Software Engineering Research and Applications.
Schuster, M., Paliwal, K., 1997. Bidirectional recurrent neural networks. IEEE Transactions on Signal Processing 45, 2673–2681.
Sehovac, L., Grolinger, K., 2020. Deep learning for load forecasting: Sequence to sequence recurrent neural networks with attention. IEEE Access 8, 36411–36426
Sharma, A., Kumar, M., Agarwal, S., 2015. A complete survey on software archi- tectural styles and patterns. Procedia Computer Science 70, 16–28
Sharma, S., Sharma, S., Athaiya, A., 2017. Activation functions in neural networks. Towards Data Sci 6, 310–316
Shin, C., Li, W., Vishwakarma, H., Roberts, N.C., Sala, F., 2021. Universalizing weak supervision. CoRR abs/2112.03865
Shrestha, A., Mahmood, A., 2019. Review of deep learning algorithms and archi- tectures. IEEE Access 7, 53040–53065.
Siow, J.K., Liu, S., Xie, X., Meng, G., Liu, Y., 2022. Learning program seman- tics with code representations: An empirical study, in: 2022 IEEE International Conference on Software Analysis, Evolution and Reengineering (SANER), pp.
Smite, D., Moe, N.B., Levinta, G., Floryan, M., 2019. Spotify guilds: How to succeed with knowledge sharing in large-scale agile organizations. IEEE Software 36, 51–57.
Sriram, A., Jun, H., Satheesh, S., Coates, A., 2017. Cold fusion: Training seq2seq models together with language models.
Sundararaman, D., Subramanian, V., Wang, G., Si, S., Shen, D., Wang, D., Carin, L., 2019. Syntax-infused transformer and bert models for machine translation and natural language understanding.
Taibi, D., El Ioini, N., Pahl, C., Niederkofler, J.R.S., 2020. Serverless cloud com- puting (function-as-a-service) patterns: A multivocal literature review, in: Pro- ceedings of the 10th International Conference on Cloud Computing and Services Science (CLOSER’20)
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L., Polosukhin, I., 2017. Attention is all you need
Wan Mohd Isa, W.A.R., Suhaimi, A.I.H., Noordin, N., Harun, A., Ismail, J., Teh, R., 2019. Cloud computing adoption reference model. Indonesian Journal of Electrical Engineering and Computer Science 16, 395.
Wang, Y., Wang, W., Joty, S., Hoi, S.C.H., 2021. Codet5: Identifier-aware uni- fied pre-trained encoder-decoder models for code understanding and generation.
Washizaki, H., Ogata, S., Hazeyama, A., Okubo, T., Fernandez, E.B., Yoshioka, N., 2020. Landscape of architecture and design patterns for iot systems. IEEE Internet of Things Journal 7, 10091–10101
Yussupov, V., Soldani, J., Breitenbücher, U., Brogi, A., Leymann, F., 2021. From serverful to serverless: A spectrum of patterns for hosting application components, pp. 268–279
Zeng, C., Yu, Y., Li, S., Xia, X., Wang, Z., Geng, M., Xiao, B., Dong, W., Liao, X., 2021. degraphcs: Embedding variable-based flow graph for neural code search
Zhang, J., Wang, X., Zhang, H., Sun, H., Wang, K., Liu, X., 2019. A novel neural source code representation based on abstract syntax tree, in: 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE), pp. 783–794
Zhang, X., Fan, J., Hei, M., 2022. Compressing bert for binary text classification via adaptive truncation before fine-tuning. Applied Sciences 12.
Zhuang, F., Qi, Z., Duan, K., Xi, D., Zhu, Y., Zhu, H., Xiong, H., He, Q., 2021. A comprehensive survey on transfer learning. Proceedings of the IEEE 109, 43–76.