Publication: Máquina caracterizadora de materiales piezoeléctricos
Authors
Abstract (Spanish)
Abstract (English)
Extent
Collections
References
Bhaumik, A., Das. A., Mishra, A. K., Shaw, A., Yadav, A. y Roy, S. (2017). Non-conventional energy sources using piezoelectric crystal for wearable electronics (pp. 1-4). 1st International Conference on Electronics, Materials Engineering and Nano-Technology (IEMENTech). DOI 10.1109/IEMENTECH.2017.8077009.
Cohen, R. E. (2008). First-principles theories of piezoelectric materials piezoelectricity: evolution and future of a technology (pp. 471-492). Heidelberg: Springer Berlin.
Cúpich, M. y Garza, F. J. (2000). Actuadores piezoeléctricos. Ingenierías, III(6), 22-28.
Da, Y. y Khaligh, A. (2009). Hybrid offshore wind and tidal turbine energy harvesting system with independently controlled rectifiers (pp. 4577-4582). 35th Annual Conference of IEEE Industrial Electronics. DOI 10.1109/IECON.2009.5414866.
Fundación Española para la Ciencia y la Tecnología (Fecyt) (2010). Materiales piezoeléctricos. Boletín Vigilancia Tecnológica, pp. 1-12.
Gusarova, E., Gusarov, B., Zakharov, D., Bousquet, M., Viala, B., Cugat, O., Delamare, J. y Gimeno, L. (2013). An improved method for piezoelectric characterization of polymers for energy harvesting applications. Journal of Physics: Conference Series. IOP Publishing, 476, 012061.
Hwang, S. J., Jung, H. J., Kim, J. H., Ahn, J. H., Song, D., Song, Y., Lee, H. L., Moon, S. P., Park, H. y Sung, T. H. (2015). Designing and manufacturing a piezoelectric tile for harvesting energy from footsteps. Current Applied Physics, 15(6), pp. 669-674. DOI: 10.1016/j.cap.2015.02.009.
Illias, H. A., Ishak, N. S., Mokhlis, H. y Hossain, M. Z. (2020). IoTbased Hybrid Renewable Energy Harvesting System from Water Flow (pp. 204-208). IEEE International Conference on Power and Energy (PECon). DOI 10.1109/PECon48942.2020.9314412.
Ledoux, A. (2011). Theory of piezoelectric materials and their applications in civil engineering (tesis de maestría, Massachusetts Institute of Technology [MIT]).
Martín, A. (2018). Aplicaciones del efecto piezoeléctrico para la generación de energía (tesis de grado, Universidad Carlos III de Madrid).
Özdemır, A. E. y Akkaya, S. (2016). Alternative renewable energy producing systems by utilizing piezoelectric transducers (pp. 59-62). IEEE International Conference on Renewable Energy Research and Applications (Icrera). DOI 10.1109/ICRERA.2016.7884357.
Phipps, A. (2010). Modeling and characterization of piezoelectric energy harvesting systems with the pulsed resonant converter (tesis doctoral, Universidad de Florida).
Ren, G. (2021). Review of piezoelectric material power supply (pp. 136-139). International Conference on Electronics, Circuits and Information Engineering (ECIE). DOI 10.1109/ ECIE52353.2021.00035.
REN21: Renewables Now (2021). Renewables 2021 Global Status Report. Disponible en https://www.ren21.net/wp-content/ uploads/2019/05/GSR2021_Full_Report.pdf.
Riobó, L., Álvarez, N., Garea, M. y Veiras, F. (2014). Interferómetro de polarización para la caracterización mecánica de dispositivos piezoeléctricos (pp. 765-769). IEEE Biennial Congress of Argentina (Argencon). DOI 10.1109/ARGENCON.2014.6868585.
Singh, A. (2014). Preparation and characterization of piezoelectric materials (pp. 1-5). International Conference for Convergence for Technology. DOI 10.1109/I2CT.2014.7092213.
Sherrit, S. y Mukherjee, B. K. (2012). Characterization of piezoelectric materials for transducers, dielectric and ferroelectric reviews. Dielectric and Ferroelectric Reviews, 175-244.
Tamayo, D. A., y Cardozo, N. K. (2017). El uso de piezoeléctricos para la generación de energía sostenible como proyecto piloto en un perfil vial de Bogotá (trabajo de grado, Universidad Católica de Colombia).
Žukauskaité, A., Broitman, E., Sandström, P., Hultman, L. and Birch, J. (2015). Nanoprobe mechanical and piezoelectric characterization of Scx Al1-x N(0001) thin films. Phys. Status Solidi A, 212(3), 666-673. DOI: 10.1002/pssa.201431634.