Publication: Domino Effects and Industrial Risks: Integrated Probabilistic Framework – Case of Tsunamis Effects
Authors
Abstract (Spanish)
Abstract (English)
Extent
© Springer Science+Business Media Dordrecht 2014
Collections
References
Abbasi T, Abbasi SA (2007) The boiling liquid expanding vapour explosion (BLEVE): mechanism, consequence assessment, management. J Hazard Mater 141:489–519
Abe K (1993) Estimate of tsunami heights from earthquake magnitudes. In: Proceedings of the IUGG/IOC international tsunami symposium TSUNAMI’93, Wakayama
Abe K (1995) Modeling of the runup heights of the hokkaido-nansei-Oki tsunami of 12 July 1993. Pure Appl Geophys 144(3/4):113–124
Ali SY, Li QM (2008) Critical impact energy for the perforation of metallic plates. Nucl Eng Des 238:2521–2528
Antonioni G, Spadoni G, Cozzani V (2009) Application of domino effect quantitative risk assessment to an extended industrial area. J Loss Prev Process Ind 22:614–624
ARIA base of BARPI, France. www.aria.environnement.gouv.fr
ASCE (2010) Minimum design loads for buildings and other structures, ASCE/SEI standard. American Society of Civil Engineers, Reston, pp 7–10
Askan A, Yucemen MS (2010) Probabilistic methods for the estimation of potential seismic damage: application to reinforced concrete buildings in Turkey. Struct Saf 32:262–271, Elsevier
ATC (2008) Guidelines for Design of Structures for Vertical Evacuation from Tsunamis, FEMA P646. Applied Technology Council. Redwood City, California, For the Federal Emergency Management Agency, FEMA and the National Oceanic and Atmospheric Administration, NOAA.: 158 p
ATC (2011) Coastal Construction Manual, FEMA P-55. Applied Technology Council. Redwood City, California, For the Federal Emergency Management Agency FEMA. II: 400 p
Batdorf SB (1974) A simplified method of elastic-stability analysis for thin cylindrical shells. NACA report – 874: 25 p
Beltrami GM, Di Risio M (2011) Algorithms for automatic, real-time tsunami detection in wind-wave measurements. Part I: implementation strategies and basic tests. Coast Eng 58:1062–1071, Elsevier
Børvik T, Hooperstad OS, Langseth M, Malo KA (2003) Effect of target thickness in blunt projectile penetration of Weldox 460 E steel plates. Int J Impact Eng 28:413–464
Burwell D, Tolkova E, Chawla A (2007) Diffusion and dispersion characterization of a numerical tsunami model. Ocean Model 19:10–30, Elsevier
CCH (2000) City and county of Honolulu building code. Department of Planning and Permitting of Honolulu Hawaii, Honolulu
CEN (2007) EN 1993-1-6 eurocode 3: design of steel structures, part 1.6: strength and stability of shell structures. CEN, Brussels
Chen L, Rotter M (2012) Buckling of anchored cylindrical shells of uniform thickness under wind load. Eng Struct 41:199–208
Cheung KF, Wei Y, Yamazaki Y, Yim SCS (2011) Modeling of 500-year tsunamis for probabilistic design of coastal infrastructures in the pacific northwest. Coast Eng 58:970–985, Elsevier
Constantin A (2009) On the relevance of soliton theory to tsunami modelling. Wave Motion 46:420–426, Elsevier
Corbet GG, Reid SR, Johnson W (1995) Impact loading of plates and shells by free flying projectiles: a review. J Impact Eng 18:141–230, 0734-743X(95)00023-2
Cozzani V, Salzano E (2004) The quantitative assessment of domino effects caused by overpressure- Part I: probit models. J Hazard Mater A107:67–80
Demetracopoulos AC, Hadjitheodorou C, Antonopoulos JA (1994) Statistical and numerical analysis of tsunami wave heights in confined waters. Ocean Eng 21(7):629–643, Pergamon
Eckert S, Jelinek R, Zeug G, Krausmann E (2012) Remote sensing-based assessment of tsunami vulnerability and risk in Alexandria, Egypt. Appl Geogr 32:714–723, Elsevier
Federal Emergency Management Agency, FEMA, USA. http://www.fema.gov/photolibrary/photo_details.do?id=42405
Flouri ET, Kalligeris N, Alexandrakis G, Kampanis NA, Synolakis CE (2011) Application of a finite difference computational model to the simulation of earthquake generated tsunamis. Appl Numer Math 67:111–125. doi: 10.1016/j.apnum.2011.06.003, Elsevier
GEBCO (2012) General Bathymetric Chart of the Oceans. Retrieved 15 June 2012, from www.gebco.net
Godoy LA (2007) Performance of storage tanks in oil facilities damaged by Hurricanes Katrina and Rita. J Perform Constructed Facil 21(6):441–449
Goto Y (2008) Tsunami damage to oil storage tanks. In: The 14 World Conference on Earthquake Engineering, Beijing
Goto K, Chagué-Goff C, Fujino S, Goff J, Jaffe B, Nishimura Y, Richmond B, Sugawara D, Szczucinski W, Tappin DR, Witter RC, Yulianto E (2011) New insights of tsunami hazard from the 2011 Tohoku-oki event. Mar Geol 290:46–50, Elsevier
Grasso VF, Singh A (2008) Global environmental alert service (GEAS). Adv Space Res 41:1836–1852, Elsevier
Haugen KB, Lovholt F, Harbitz CB (2005) Fundamental mechanisms for tsunami generation by submarine mass flows in idealised geometries. Mar Metroleum Geol 22:209–217, Elsevier
Heidarzadeh M, Pirooz MD, Zaker NH (2009) Modeling of the near-field effects of the worst-case tsunami in the Makran subduction zone. Ocean Eng 36:368–376, Elsevier
Helal MA, Mehanna MS (2008) Tsunamis from nature to physics. Chaos Solitons Fractals 36:787–796, Elsevier
Holden PL (1988) Assessment of missile hazards: review of incident experience relevant to major hazard plant. Safety and reliability directorate, Health & Safety Directorate
INERIS (2011) (in French) Note de caractérisation du comportement des équipements industriels à l’inondation. Rapport d'étude DRA-. Adrien Willot et Agnès Vallée, Institut National de l'Environnement Industriel et des Risques
Jin D, Lin J (2011) Managing tsunamis through early warning systems: a multidisciplinary approach. Ocean Coast Manag 54:189–199, Elsevier
Kharif C, Pelinovsky E (2005) Asteroids impact tsunamis. Physique 6:361–366
Koshimura S, Namegaya Y et al (2009) Tsunami fragility – a New measure to identify tsunami damage. J Disaster Res 4(6):479–490
Lees FP (2005) Loss prevention in the process industries, 3rd edn. Butterwort Heinemann, Oxford
Leone F, Lavigne F, Paris R, Denain JC, Vinet F (2011) A spatial analysis of the December 26th, 2004 tsunami-induced damages: lessons learned for a better risk assessment integrating buildings vulnerability. Appl Geogr 31:363–375, Elsevier
Liu PLF, Wang X, Salisbury AJ (2009) Tsunami hazard and early warning system in South China Sea. J Asian Earth Sci 36:2–12, Elsevier
Lovholt F, Glimsdal S, Harbitz CB, Zamora N, Nadim F, Peduzzi P, Dao H, Smebye H (2011) Tsunami hazard and exposure on the global scale. Earth-Sci Rev, Elsevier. doi:10.1016/j.earscirev.2011.10.002
Lukkunaprasit P, Thanasisathit N et al (2009) Experimental verification of FEMA P646 tsunami loading. J Disaster Res 4(6):410–418
Madsen PA (2010) On the evolution and run-up of tsunamis. J Hydrodyn 22:1–6. doi: 10.1016/S1001-6058(09)60160-8, Elsevier
Marhavilas PK, Koulouriotis D, Gemeni V (2011) Risk analysis and assessment methodologies in the work sites : on a review, classification and comparative study of the scientific literature of the period 2000–2009. J Loss Prev Process Industries 24(5):477–523
Mebarki A, Mercier F, Nguyen QB, Ami Saada R, Meftah F, Reimeringer M (2007) A probabilistic model for the vulnerability of metal plates under the impact of cylindrical projectiles. J Loss Prev Process Industries 20:128–134
Mebarki A, Genatios C, Lafuente M (2008a) Risques Naturels et Technologiques : Aléas, Vulnérabilité et Fiabilité des Constructions – vers une formulation probabiliste intégrée. Presses Ponts et Chaussées, Paris, ISBN 978-2-85978-436-2
Mebarki A, Mercier F, Nguyen QB, Ami Saada R, Meftah F, Reimeringer M (2008b) Reliability analysis of metallic targets under metallic rods impact: towards a simplified probabilistic approach. J Loss Prev Process Industries 21:518–527
Mebarki A, Mercier F, Nguyen QB, Ami Saada R (2009a) Structural fragments and explosions in industrial facilities. Part I: probabilistic description of the source terms. J Loss Prev Process Industries 22(4):408–416. doi: 10.1016/j.jlp.2009.02.006
Mebarki A, Mercier F, Nguyen QB, Ami Saada R (2009b) Structural fragments and explosions in industrial facilities. Part II: projectile trajectory and probability of impact. J Loss Prev Process Industries 22(4):417–425, 10.1016/j.jlp.2009.02.005
Mebarki A (2009) A comparative study of different PGA attenuation and error models: case of 1999 Chi-Chi earthquake. Tectonophysics 466:300–306
Mingguang Z, Juncheng J (2008) An improved probit method for assessment of domino effect to chemical process equipment caused by overpressure. J Hazard Mater 158:280–286
Naito C, Cox D et al (2012) Fuel storage container performance during the 2011 Tohoku japan tsunami. J Perform Constr Fac, 10.1061/(ASCE)CF.1943-5509.0000339
Nandasena NAK, Paris R, Tanaka N (2011) Reassessment of hydrodynamic equations: minimum flow velocity to initiate boulder transport by high energy events (storms, tsunamis). Mar Geol 281:70–84, Elsevier
Neilson AJ (1985) Empirical equations for the perforation of mild steel plates. J Impact Eng 3:137–142
Nishi H (2012) Damage on Hazardous Materials Facilities. In: international symposium on engineering lessons learned from the 2011 Great East Japan Earthquake, Tokyo
Nistor I, Palermo D et al (2010) Experimental and numerical modeling of tsunami loading on structures. In: International conference on coastal engineering, ASCE
Nistor I, Palermo D et al (2010b) In: Kim YC (ed) Tsunami-induced forces on structures. Handbook of coastal and ocean engineering. World Scientific Publishing Co. Pte. Ltd, Singapore, pp 261–286
Norio O, Ye T, Kajitani Y, Shi P, Tatano H (2011) The 2011 Eastern Japan great earthquake disaster: overview and comments. Int J Disaster Risk Sci 2(1):34–42
Ohte S, Yoshizawa H, Chiba N, Shida S (1982) Impact strength of steel plates struck by projectiles. Bull Japan Soc Mech Eng 25:1226–1231
Palermo D, Nistor I (2008) Tsunami-induced loading on structures. Structure Magazine 3:10–13
Pophet N, Kaewbanjak N, Asavanant J, Ioualalen M (2011) High grid resolution and parallelized tsunami simulation with fully nonlinear Boussinesq equations. Comput Fluids 40:258–268, Elsevier
Reese S, Bradley BA, Bind J, Smart G, Power W, Sturman J (2011) Empirical building fragilities from observed damage in the 2009 South Pacific tsunami. Earth Sci Rev 107:156–173, Elsevier
Ruiz C, Salvatorelli-D’Angelo F, Thompson VK (1989) Elastic response of thin-wall cylindrical vessels to blast loading. Comput Fluids 32(5):1061–1072
Saatçioğlu M (2009) Performance of structures during the 2004 Indian Ocean tsunami and tsunami induced forces for structural design. Earthquake Tsunamis 11:153–178, A. T. Tankut, Springer Netherlands
Sakakiyama T, Matsuura S et al (2009) Tsunami force acting on oil tanks and buckling analysis for tsunami pressure. J Disaster Res 4(6):427–435
Seveso Inspection Tool (2009) Réservoirs de stockage aériens atmosphériques, Deuxième version test, CRC/SIT/012-F
Sladen A, Hébert H, Schindelé F, Reymond D (2007) L’aléa tsunami en polynésie française : apports de la simulation numérique. C R Géosci 339:303–316, Elsevier
Suguino H, Iwabuchi Y et al (2008) Development of probabilistic methodology for evaluating tsunami risk on nuclear power plants. In: The 14th World Conference on Earthquake Engineering, Beijing
Talaslidis DG, Manolis GD, Paraskevopoulos E, Panagiotopoulos C, Pelekasis N (2004) The Sun website, UK: http://www.thesun.co.uk/sol/homepage/news/3615721/Four-die-in-oil-refinery-explosion.html
TNO (2005a) Methods for the calculation of possible damage to people and objects resulting from releases from hazardous materials. The Green Book CPR16E
TNO (2005b) Methods for the calculations of physical effects – due to release of hazardous materials (liquids and gases). The Yellow Book CPR14E 2005
Todorovska MII, Hayir A, Trifunac MD (2002) A note on tsunami amplitudes above submarine slides and slumps. Soil Dyn Earthq Eng 22:129–141, Elsevier
Tsamopoulos JA (2004) Risk analysis of industrial structures under extreme transient loads. Soil Dyn Earthq Eng 24:435–448
Università degli Studi di Torino. Laboratory of Molecular Electrochemistry, Italy. http://lem.ch.unito.it/didattica/infochimica/2008_Esplosivi/Explosion.html
USGS (2011) United States Geological Survey. Retrieved 13/03/2012, 2012, from www.usgs.gov
van den Berg AC (1985) The multi-energy method, a framework for vapor cloud explosion blast prediction. J Hazard Mater 12:1–10
van Zijll de Jong SL, Dominey-Howes D, Roman CE, Calgaro E, Gero A, Veland S, Bird DK, Muliaina T, Tuiloma-Sua D, Afioga TL (2011) Process, practice and priorities – key lessons learnt undertaking sensitive social reconnaissance research as part of an (UNESCO-IOC) International Tsunami Survey Team. Earth-Sci Rev 107:174–192, Elsevier
Ward SN (2011) In: Gupta HK (ed) Tsunamis. Encyclopedia of solid earth geophysics. Springer, Dordrecht, pp 1473–1492
Wijetunge JJ (2006) Tsunami on 26 December 2004: spatial distribution of tsunami height and the extent of inundation in Sri Lanka. Sci Tsunami Haz 24(3):225–240
Wilson RI, Dengler LA, Goltz JD, Legg MR, Miller KM, Ritchie A, Whitmore PM (2011) Emergency response and field observation activities of geoscientists in California (USA) during the September 29, 2009, Samoa Tsunami. Earth-Sci Rev 107:193–200, Elsevier
Xie M (2007) Thermodynamic and gas dynamic aspects of a BLEVE, Delft University of Technology, No.: 04–200708
Yeh H (2008) Maximum fluid forces in the tsunami runup zone. J Waterw Port Coast Ocean Eng 132(6):496–501
Zhang DH, Yip TL, Ng CO (2009) Predicting tsunami arrivals: estimates and policy implications. Mar Policy 33:643–650, Elsevier
Zhao BB, Duan WY, Webster WC (2011) Tsunami simulation with Green-Naghdi theory. Ocean Eng 3:389–396, Elsevier