Publication: AnOpen-Source Social Robot Based on Compliant Soft Robotics for Therapy with Children with ASD
Authors
Abstract (Spanish)
Abstract (English)
Extent
Collections
Collections
References
Cifuentes, C.A.; Pinto, M.J.; Céspedes, N.; Múnera, M. Social Robots in Therapy and Care. Curr. Robot. Rep. 2020, 1, 59–74. [CrossRef]
Baio, J.; Wiggins, L.; Christensen, D.L.; Maenner, M.J.; Daniels, J.; Warren, Z.; Kurzius-Spencer, M.; Zahorodny,W.; Robinson, C.; Rosenberg, C.R.; etal. PrevalenceofAutismSpectrumDisorderAmongChildren Aged 8 Years—Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2014. MMWRSurveill. Summ. 2018, 67, 1–23. [CrossRef] [PubMed]
World Health Organization. Autism spectrum disorders. In Fact Sheets; WHO: Geneva, Switzerland, 2018.
Eggebrecht, A.T.; Elison, J.T.; Feczko, E.; Todorov, A.; Wolff, J.J.; Kandala, S.; Adams, C.M.; Snyder, A.Z.; Lewis, J.D.; Estes, A.M.; et al. Joint attention and brain functional connectivity in infants and toddlers. Cereb. Cortex 2017, 27, 1709–1720. [CrossRef] [PubMed]
American Psychiatric Association. DSM-5 Diagnostic Classification. In Diagnostic and Statistical Manual of Mental Disorders; American Psychiatric Association: Washington, DC, USA, 2013. [CrossRef]
Belpaeme, T.; Baxter, P.E.; Read, R.; Wood, R.; Cuayáhuitl, H.; Kiefer, B.; Racioppa, S.; Kruijff-Korbayová, I.; Athanasopoulos, G.; Enescu, V.; et al. Multimodal Child-Robot Interaction: Building Social Bonds. J. Hum. Robot. Interact. 2012, 1, 33–53. [CrossRef]
Cabibihan, J.J.; Javed, H.; Ang, M.; Aljunied, S.M. Why Robots? A Survey on the Roles and Benefits of Social Robots in the Therapy of Children with Autism. Int. J. Soc. Robot. 2013, 5, 593–618. [CrossRef]
Pennisi, P.; Tonacci, A.; Tartarisco, G.; Billeci, L.; Ruta, L.; Gangemi, S.; Pioggia, G. Autism and social robotics: Asystematic review. Autism Res. 2016, 9, 165–183. [CrossRef]
Di Nuovo, A.; Conti, D.; Trubia, G.; Buono, S.; Di Nuovo, S. Deep learning systems for estimating visual attention in robot-assisted therapy of children with autism and intellectual disability. Robotics 2018, 7, 25. [CrossRef]
Ramirez-Duque, A.A.; Frizera-Neto, A.; Bastos, T.F. Robot-Assisted Diagnosis for Children with Autism Spectrum Disorder Based on Automated Analysis of Nonverbal Cues. In Proceedings of the 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob), Enschede, The Netherlands, 26–29 August 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 456–461. [CrossRef]
Anzalone, S.M.; Xavier, J.; Boucenna, S.; Billeci, L.; Narzisi, A.; Muratori, F.; Cohen, D.; Chetouani, M. Quantifying patterns of joint attention during human-robot interactions: An application for autism spectrum disorder assessment. Pattern Recognit. Lett. 2019, 118, 42–50. [CrossRef]
Del Coco, M.; Leo, M.; Carcagni, P.; Fama, F.; Spadaro, L.; Ruta, L.; Pioggia, G.; Distante, C. Study of Mechanisms of Social Interaction Stimulation in Autism Spectrum Disorder by Assisted Humanoid Robot. IEEE Trans. Cogn. Dev. Syst. 2017, 8920, 1. [CrossRef]
Yun, S.S.; Choi, J.; Park, S.K.; Bong, G.Y.; Yoo, H. Social skills training for children with autism spectrum disorder using a robotic behavioural intervention system. Autism Res. 2017, 10, 1306–1323. [CrossRef]
Zheng,Z.; Das, S.; Young, E.M.; Swanson, A.; Warren, Z.E.; Sarkar, N. Autonomous robot-mediated imitation learning for children with autism. In Proceedings of the 2014 IEEE International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–7 June 2014; pp. 2707–2712. [CrossRef]
Costescu, C.A.; Vanderborght, B.; David, D.O. Reversal Learning Task in Children with Autism Spectrum Disorder: A Robot-Based Approach. J. Autism Dev. Disord. 2014, 45, 3715–3725. [CrossRef] [PubMed]
Kim, E.S.; Berkovits, L.D.; Bernier, E.P.; Leyzberg, D.; Shic, F.; Paul, R.; Scassellati, B. Social robots as embedded reinforcers of social behaviour in children with autism. J. Autism Dev. Disord. 2013, 43, 1038–1049. [CrossRef] [PubMed]
Feil-Seifer, D.; Mataric, M. Automated detection and classification of positive vs. negative robot interactions with children with autism using distance-based features. In Proceedings of the 6th International Conference on Human-Robot Interaction-HRI ’11, Lausanne, Switzerland, 8–11 March 2011; p. 323. [CrossRef]
Vallès-Peris, N.; Angulo, C.; Domènech, M. Children’s imaginaries of human-robot interaction in healthcare. Int. J. Environ. Res. Public Health 2018, 15, 970. [CrossRef] [PubMed]
Randall, N.; Bennett, C.C.; Šabanovi´ c, S.; Nagata, S.; Eldridge, L.; Collins, S.; Piatt, J.A. More than just friends: In-home use and design recommendations for sensing socially assistive robots (SARs) by older adults with depression. Paladyn 2019, 10, 237–255. [CrossRef]
Nakadoi, Y. Usefulness of Animal Type Robot Assisted Therapy for Autism Spectrum Disorder in the Child and Adolescent Psychiatric Ward. In New Frontiers in Artificial Intelligence; Otake, M., Kurahashi, S., Ota, Y., Satoh, K., Bekki, D., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 478–482.
Bartneck, C.; Belpaeme, T.; Eyssel, F.; Kanda, T.; Keijsers, M.; Šabanovi´c, S. Human-Robot Interaction: AnIntroduction; Cambridge University Press: Cambridge, UK, 2020.
Fletcher-Watson, S.; Adams, J.; Brook, K.; Charman, T.; Crane, L.; Cusack, J.; Leekam, S.; Milton, D.; Parr, J.R.; Pellicano, E. Making the future together: Shaping autism research through meaningful participation. Autism 2018, 1–11. [CrossRef]
Merter, S.; Hasırcı, D. A participatory product design process with children with autism spectrum disorder. CoDesign 2016, 14, 170–187. [CrossRef]
Huijnen, C.A.G.J.; Lexis, M.A.S.; Jansens, R.; de Witte, L.P. Mapping Robots to Therapy and Educational Objectives for Children with Autism Spectrum Disorder. J. Autism Dev. Disord. 2016, 1–15. [CrossRef]
Simut, R.; Vanderfaeillie, J.; Peca, A.; Van de Perre, G.; Vanderborght, B. Children with Autism Spectrum Disorders Make a Fruit Salad with Probo, the Social Robot: An Interaction Study. J. Autism Dev. Disord. 2016, 46, 113–126. [CrossRef]
Wood, L.J.; Robins, B.; Lakatos, G.; Syrdal, D.S.; Zaraki, A.; Dautenhahn, K. Developing a protocol and experimental setup for using a humanoid robot to assist children with autism to develop visual perspective taking skills. Paladyn 2019, 10, 167–179. [CrossRef]
Ramírez-Duque, A.A.; Aycardi, L.F.; Villa, A.; Munera, M.; Bastos, T.; Belpaeme, T.; Frizera-Neto, A.; Cifuentes, C.A. Collaborative and Inclusive Process with the Autism Community: A Case Study in Colombia About Social Robot Design. Int. J. Soc. Robot. 2020. [CrossRef]
Argall, B.D.; Billard, A.G. A survey of Tactile HumanRobot Interactions. Robot. Auton. Syst. 2010, 58, 1159–1176. [CrossRef]
Libin, A.; Libin, E. Person-robot interactions from the robopsychologists’ point of view: The robotic psychology and robotherapy approach. Proc. IEEE 2004, 92, 1789–1803. [CrossRef]
Stiehl, W.; Lieberman, J.; Breazeal, C.; Basel, L.; Lalla, L.; Wolf, M. Design of a therapeutic robotic companion for relational, affective touch. In Proceedings of the ROMAN 2005 IEEE International Workshop on Robot and HumanInteractive Communication, Nashville, TN, USA, 13–15 August 2005; IEEE: Piscataway, NJ, USA, 2005; pp. 408–415. [CrossRef]
Iocchi, L.; L, M.T.; Jeanpierre, L. Interaction for Social Robots Assisting Users in Shopping Malls. Int. Conf. Soc. Robot. 2015, 1, 264–274. [CrossRef]
Srinivasan, S.M.; Eigsti, I.M.; Neelly, L.; Bhat, A.N. The effects of embodied rhythm and robotic interventions on the spontaneous and responsive social attention patterns of children with autism spectrum disorder (ASD): A pilot randomized controlled trial. Res. Autism Spectr. Disord. 2016, 27, 54–72. [CrossRef] [PubMed]
Chevalier, P.; Martin, J.C.; Isableu, B.; Bazile, C.; Iacob, D.O.; Tapus, A. Joint Attention using Human-Robot Interaction: Impact of sensory preferences of children with autism. In Proceedings of the 25th IEEE International Symposium on Robot and Human Interactive Communication, RO-MAN 2016, New York, NY, USA, 26–31 August 2016; pp. 849–854. [CrossRef]
So, W.C.; Wong, M.K.Y.; Lam, C.K.Y.; Lam, W.Y.; Chui, A.T.F.; Lee, T.L.; Ng, H.M.; Chan, C.H.; Fok, D.C.W. Using a social robot to teach gestural recognition and production in children with autism spectrum disorders. Disabil. Rehabil. Assist. Technol. 2018, 13, 527–539. [CrossRef] [PubMed]
David, D.O.; Costescu, C.A.; Matu, S.; Szentagotai, A.; Dobrean, A. Developing Joint Attention for Children with Autism in Robot-Enhanced Therapy. Int. J. Soc. Robot. 2018, 10, 595–605. [CrossRef]
Zheng, Z.; Zhao, H.; Swanson, A.R.; Weitlauf, A.S.; Warren, Z.E.; Sarkar, N. Design, Development, and Evaluation of a Noninvasive Autonomous Robot-Mediated Joint Attention Intervention System for Young Children with ASD. IEEE Trans. Hum. Mach. Syst. 2018, 48, 125–135. [CrossRef]
Ramírez-Duque, A.A.; Bastos, T.; Munera, M.; Cifuentes, C.A.; Frizera-Neto, A. Robot-Assisted Intervention for children with special needs: A comparative assessment for autism screening. Robot. Auton. Syst. 2020, 127, 103484. [CrossRef]
Dautenhahn, K.; Nehaniv, C.L.; Walters, M.L.; Robins, B.; Kose-Bagci, H.; Mirza, N.A.; Blow, M. KASPAR—A Minimally Expressive Humanoid Robot for Human–Robot Interaction Research. Appl. Bionics Biomech. 2009, 6, 369–397. [CrossRef]
Robins, B.; Dautenhahn, K. Developing play scenarios for tactile interaction with a humanoid robot: Acase study exploration with children with autism. In International Conference on Social Robotics; Springer: Berlin/Heidelberg, Germany,2010; pp. 243–252.
Wainer,J.; Dautenhahn, K.; Robins, B.; Amirabdollahian, F. Collaborating with Kaspar: Using an autonomous humanoid robot to foster cooperative dyadic play among children with autism. In Proceedings of the 2010 10th IEEE-RAS International Conference on Humanoid Robots, Nashville, TN, USA, 6–8 December 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 631–638, [CrossRef]
Costa, S.; Lehmann, H.; Dautenhahn, K.; Robins, B.; Soares, F. Using a humanoid robot to elicit body awareness and appropriate physical interaction in children with autism. Int. J. Soc. Robot. 2015, 7, 265–278. [CrossRef]
Peca, A.; Simut, R.; Pintea, S.; Vanderborght, B. Are Children with ASD more Prone to Test the Intentions of the Robonova Robot Compared to a Human? Int. J. Soc. Robot. 2015, 7, 629–639. [CrossRef]
Hanson, D.; Mazzei, D.; Garver, C.; Ahluwalia, A.; De Rossi, D.; Stevenson, M.; Reynolds, K. Realistic Humanlike Robots for Treatment of Autism. In proceedings of the 5th International Conference on Pervasive Technologies Related to Assistive Environments PETRA, Corfu, Greece, 26–29 June 2012; pp. 1–7.
Vandevelde, C.; Saldien, J.; Ciocci, M.C.; Vanderborght, B. The use of social robot ono in robot assisted therapy. In Proceedings of the International Conference on Social Robotics, Bristol, UK, 27–29 October 2013.
Vandevelde, C.; Saldien, J.; Ciocci, C.; Vanderborght, B. Ono, a DIY open source platform for social robotics. In Proceedings of the 8th International Conference on Tangible, Embedded and Embodied Interaction, Munich, Germany, 16–19 February 2014.
Goris, K.; Saldien, J.; Vanderborght, B.; Lefeber, D. Mechanical design of the huggable robot Probo. Int. J. Humanoid Robot. 2011, 8, 481–511. [CrossRef]
Saldien, J.; Goris, K.; Yilmazyildiz, S.; Verhelst, W.; Lefeber, D. On the Design of the Huggable Robot Probo. J. Phys. Agents 2008, 2, 3–11. [CrossRef]
Shibata, T.; Mitsui, T.; Wada, K.; Touda, A.; Kumasaka, T.; Tagami, K.; Tanie, K. Mental commit robot and its application to therapy of children. IEEE/ASME Int. Conf. Adv. Intell. Mechatron. AIM 2001, 2, 1053–1058. [CrossRef]
Stiehl, W.D.; Lieberman, J.; Breazeal, C.; Basel, L.; Cooper, R.; Knight, H.; Lalla, L.; Maymin, A.; Purchase, S. The Huggable: A therapeutic robotic companion for relational, affective touch. In Proceedings of the 2006 3rd IEEE Consumer Communications and Networking Conference, CCNC 2006, Las Vegas, NV, USA, 8–10 January 2006; Volume 2, pp. 1290–1291. [CrossRef]
Grunberg, D.; Ellenberg, R.; Kim, Y.E.; Oh, P.Y. From robonova to hubo: Platforms for robot dance. In FIRA RoboWorld Congress; Springer: Berlin/Heidelberg, Germany, 2009; pp. 19–24.
Shamsuddin, S.; Yussof, H.; Ismail, L.I.; Mohamed, S.; Hanapiah, F.A.; Zahari, N.I. Initial Response in HRI-a Case Study on Evaluation of Child with Autism Spectrum Disorders Interacting with a Humanoid Robot NAO. Procedia Eng. 2012, 41, 1448–1455. [CrossRef]
Tapus, A.; Peca, A.; Aly, A.; Pop, C.; Jisa, L.; Pintea, S.; Rusu, A.S.; David, D.O. Children with autism social engagement in interaction with Nao, an imitative robot—A series of single case experiments. Interact. Stud. 2012, 13, 315–347. [CrossRef]
Robins,B.; Dautenhahn,K. Kaspar,thesocialrobotandwaysitmayhelpchildrenwithautism—Anoverview. Enfance 2018, 2018, 91–102. [CrossRef]
Mehrabian, A. Communication without words. Commun. Theory 2008, 6, 193–200.
. Samadiani, N.; Huang, G.; Cai, B.; Luo, W.; Chi, C.-H.; Xiang, Y.; He, J. A Review on Automatic Facial Expression Recognition Systems Assisted by Multimodal Sensor Data. Sensors 2019, 19, 1863. [CrossRef]
Scassellati, B.; Henny Admoni.; Matari´c, M. Robots for Use in Autism Research. Annu. Rev. Biomed. Eng. 2012, 14, 275–294. [CrossRef]
Ricks, D.J.; Colton, M.B. Trends and considerations in robot-assisted autism therapy. In Proceedings of the 2010 IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, 3–7 May 2010; IEEE: Piscataway, NJ, USA, 2010; pp. 4354–4359.
Belpaeme, T.; Kennedy, J.; Ramachandran, A.; Scassellati, B.; Tanaka, F. Social robots for education: A review. Sci. Robot. 2018, 3, eaat5954. [CrossRef]
Admoni,H.; Scassellati, B. Social eye gaze in human-robot interaction: A review. J.-Hum.-Robot. Interact. 2017, 6, 25–63. [CrossRef]
Welch, K.C.; Lahiri, U.; Warren, Z.; Sarkar, N. An approach to the design of socially acceptable robots for children with autism spectrum disorders. Int. J. Soc. Robot. 2010, 2, 391–403. [CrossRef]
Marino, F.; Chilà, P.; Sfrazzetto, S.T.; Carrozza, C.; Crimi, I.; Failla, C.; Busà, M.; Bernava, G.; Tartarisco, G.; Vagni, D.; et al. Outcomes of a robot-assisted social-emotional understanding intervention for young children with autism spectrum disorders. J. Autism Dev. Disord. 2020, 50, 1973–1987. [CrossRef] [PubMed]
Lee, C.; Kim, M.; Kim, Y.J.; Hong, N.; Ryu, S.; Kim, H.J.; Kim, S. Soft robot review. Int. J. Control. Autom. Syst. 2017, 15, 3–15. [CrossRef]
Pratt, G.A.; Williamson, M.M. Series elastic actuators. IEEE Int. Conf. Intell. Robot. Syst. 1995, 1, 399–406. [CrossRef]
Gomez,R.;Szapiro, D.; Galindo, K.; Nakamura, K. Haru: Hardware design of an experimental tabletop robot assistant. In Proceedings of the 2018 ACM/IEEE International Conference on Human-Robot Interaction, Chicago, IL, USA, 5–8 March 2018; pp. 233–240.
Hopkins, J.B.; Culpepper, M.L. Synthesis of multi-degree of freedom, parallel flexure system concepts via Freedom and Constraint Topology (FACT)—Part I: Principles. Precis. Eng. 2010, 34, 259–270. [CrossRef]
Ma,X.; Quek, F. Development of a child-oriented social robot for safe and interactive physical interaction. In Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, 18–22 October 2010; IEEE: Piscataway, NJ, USA, 2010,; pp. 2163–2168.
Stoelen, M.F.; Bonsignorio, F.; Cangelosi, A. Co-exploring actuator antagonism and bio-inspired control in a printable robot arm. In International Conference on Simulation of Adaptive Behavior; Springer: Berlin/Heidelberg, Germany, 2016, pp. 244–255.
Petit, F.; Friedl, W.; Höppner, H.; Grebenstein, M. Analysis and synthesis of the bidirectional antagonistic variable stiffness mechanism. IEEE/ASME Trans. Mechatron. 2014, 20, 684–695. [CrossRef]
Casas, J.; Leal-Junior, A.; Díaz, C.R.; Frizera, A.; Múnera, M.; Cifuentes, C.A. Large-range polymer optical-fibre strain-gauge sensor for elastic tendons in wearable assistive robots. Materials 2019, 12, 1443. [CrossRef]
Clayton, H.M.; Lanovaz, J.; Schamhardt, H.; Willemen, M.; Colborne, G. Net joint moments and powers in the equine forelimb during the stance phase of the trot. Equine Vet. J. 1998, 30, 384–389. [CrossRef]
Tronick, E.Z.; Morelli, G.A.; Ivey, P.K. The Efe forager infant and toddler’s pattern of social relationships: Multiple and simultaneous. Dev. Psychol. 1992, 28, 568. [CrossRef]