Publication: New forms of strong compactness in terms of ideals
Authors
Authors
Abstract (Spanish)
Extent
Collections
References
M. E. Abd El-Monsef, S. N. El Deeb and R.A. Mahmoud, β-open sets and β-continuous mappings, Bull. Fac. Sci. Assiut Univ., 12 (1983), 77-90.
M. E. Abd El-Monsef, E. F. Lashien and A. A. Nasef, S-compactness via ideals, Tamkang J. Math., 24, No. 4 (1993), 431-443.
A. A. El Atik, A study of some types of mappings on topological spaces, Master’s thesis, Faculty of Science, Tanta University, Tanta, Egypt, (1997).
M. K. Gupta and T. Noiri, C-compactness modulo an ideal, International J. Math. and Math. Sci., 2006, (2006), 1-12. DOI: 10.1155/IJMMS/2006/78135
A. Gupta and R. Kaur, Compact spaces with respect to an ideal, International. J. P. and Ap. Math., 92, No. 3 (2014), 443-448. DOI: 10.12732/ijpam.v92i3.11
T. R. Hamlett and D. Jancovi´c, Compactness with respect to an ideal, Boll. Un. Math. Ital., 7, No. 4B (1990), 849-861.
T. R. Hamlett, D. Jancovi´c and D. Rose, Countable compactness with respect to an ideal, Math. Chronicle, 20, (1991), 109-126.
R. A. Hosny, Some types of compactness via ideal, International J. Sci. & Eng. Res., 4, No. 5 (2013), 1293-1296.
N. Levine, Semi-open and semi-continuity in topological spaces, Amer. Math. Mountly, 70, (1963), 36-41. DOI: 10.2307/2312781
N. Levine, Generalized closed sets in topological spaces, Rend. Circ. Mat. Palermo, 19, (1970), 89-96.
A. A. Nasef and T. Noiri, On α-compact modulo an ideal, Far East J. Math. Sci., 6, No. 6 (1998), 857-865.
A. A. Nasef, Some classes of compactness in terms of ideals, Soochow Jour. of Math., 27, No. 3 (2001), 343-352.
R. L. Newcomb, Topologies which are compact modulo an ideal, Ph. Dissertation, Univ. of Cal. at Santa Barbara, (1967).
O. Njastad, On some classes of nearly open sets, Pacific J. Math., 15, (1965), 961-970. DOI: 10.2140/pjm.1965.15.961
D. V. Rancin, Compactness modulo an ideal, Soviet Math. Dokl., 13, No. 1 (1972), 193-197.