Publication: Evaluación de los beneficios de la captura de CO2 para el tratamiento de agregados finos reciclados de concreto, como una estrategia para combatir el cambio climático
Abstract (Spanish)
Abstract (English)
Extent
Collections
References
Aimaro, S. et al. (2012). Waste materials for carbon capture and storage by mineralisation (CCSM) - AUK perspective. Applied Energy, 99, 545-554.
Airaksinen, M. & Matilainen, P. (2011). A carbon footprint of an office building. Energies, 4, 1197-1210.
Baojian, Z., Poon, C. & Shi, Q. (2013). Experimental study on CO2 curing for enhancement of recycled aggregate properties. Construction and Building Materials, 44, 1-5.
Bleischwitz, R. & Bahn-Walkowiak, B. (2011). Aggregates and construction markets in Europe: towards a sectorial action plan on sustainable resource management. Miner Eng, 22, 159-176.
Bobicki, E., Liu, Q., Xu, Z. & Zeng, H. (2012). Carbon capture and storage using alkaline industrial wastes. Prog Energy Combust, 38, 302-320.
Cement Technology Roadmap, Carbon emissions reductions up to 2050 (2009). International Energy Agency and World Business Council for Sustainable Development, p. 36. Date accessed sept. 13, 2011, http://www.wbcsd.org/DocRoot/mka1EKor6mqLVb9w903o/WBCSD-IEA_CementRoadmap.pdf.
Collins, F. (2010). Inclusion of carbonation during the life cycle of built and recycled concrete: influence on their carbon footprint. Int. J. Life Cycle Assess, 15, 549–556.
Deyu, K., Ting, L., Jianjun, Z., Chengchang, M., Jun, J. & Jing, J. (2010). Effect and mechanism of surface-coating pozzalanics materials around aggregate on properties and ITZ microstructure of recycled aggregate concrete. Construction and Building Materials, 24, 701-708.
Dosho, Y. (2007). Development of a sustainable concrete waste recycling system – application of recycled aggregate concrete produced by aggregate replacing Method. J Advanced Concrete Technology, 5(1), 27-42.
Engelsen, C., Mehus, J. & Pade. C. (2005). Carbon Dioxide Uptake in Demolished and Crushed Concrete, Tech. Rep. Oslo: Norwegian Building Research Institute.
Ensayos de laboratorio de la Escuela Colombiana de Ingeniería (ECI) (2014).
Erin, R. et al. (2012). Carbon capture and storage using alkaline industrial wastes. Progress in Energy and Combustion Science, 38, 302-320.
Fernández, B., Simons, S., Hills, C., & Carey, P. (2004). A review of accelerated carbonation technology in the treatment of cementbased materials and sequestration of CO2. Journal of Hazardous Materials B112, 193-205.
García, C., et al. (2008). New insights on the use of supercritical carbon dioxide for the accelerated carbonation of cement pastes. J. of Supercritical Fluids, 43, 500–509.
Guggemos, A. & Horvath, A. (2005). Comparison of environmental effects of steel and concrete-framed buildings. Journal of infrastructure Systems, 11 (008), 93-101.
Hasanbeigi et al. (2012). Emerging energy-efficiency and CO2 emission-reduction technologies for cement and concrete production: A technical review. Renewable and Sustainable Energy Reviews, 16, 6220-6238.
Huijgen, W., Ruijg, G., Comans, R. & Witkamp, G. (2006). Energy consumption and net CO2 sequestration of aqueous mineral carbonation. Industry Engineering Chemistry, 45, 9184–9194.
Jonsson, G. & Wallevik, O. (2005). Information on the use of concrete in Denmark, Sweden, Norway and Iceland, Tech. Rep. Reykjavik: Icelandic Building Research Institute.
Katz, A. (2004). Treatments for the improvement of recycled aggregate. J Mater Civil Eng,16(6), 597-603.
Kawano, H. (2000). Barriers for sustainable use of concrete materials, Concrete Technology for a Sustainable Development in the 21st Century. London/New York: E & FNSpon.
Khatib, J. (2005). Properties of concrete incorporating fine recycled aggregate. Cement & Concrete 2005, 35, 763-769.
Kosmatka, S. et al. (2002). Design and control of concrete mixtures. Cement Association of Canada, Ottawa, Ontario, Canada, 7.
Kou, S. & Poon, C. (2012). Enhancing the durability properties of concrete prepared with coarse recycled aggregate. Construction and Building Materials, 35, 69-76.
Kou, S., Zhan, B. & Poon, C. (2014). Use of a CO2 curing step to improve the properties of concrete prepared with recycled aggregates. Cement & Concrete Composites, 45, 22-28.
Kou, SC., Zhan, B.J. & Poon, C.S. (2012). Feasibility study of using recycled fresh concrete waste as coarse aggregates in concrete. Construction Build Mater, 28, 549-556.
Lagerblad, B. (2005). Carbon Dioxide Uptake During Concrete Life Cycle: State of the Art, Tech. Rep, Swedish Cement and Concrete Research Institute, de www.cbi.se.
Li, G., Xie, H. & Xiong, G. (2001). Transition zone studies of newto-old concrete with different binders. Cement and Concrete Composites, 23, 381-387.
Li, W. (2002). Composition Analysis of Construction and Demolition Waste and Enhancing Waste Reduction and Recycling in Construction Industry in Hong Kong, Department of Building and Real Estate. Hong Kong: The Hong Kong Polytechnic University
Liu, Q., Xiao, J., & Sun, Z. (2011). Experimental study on the failure mechanism of recycled concrete. Cement Concrete, 41, 1050-1057.
Méndez, S. (2011). Aprovechamiento de escombros: una oportunidad para mejorar la infraestructura de las comunidades marginadas. II Conferencia Internacional “Gestión de Residuos en Ámerica Latina (GRAL)”.
Montgomery, D.G. (1998). Workability and compressive strength properties of concrete containing recycled concrete aggregate. In R.K. Dhir, N.A. Henderson, M.C. Limbachiya (eds.). Proceedings of international symposium: sustainable construction: use of recycled concrete aggregate. London: Thomas Telford, 289-296.
Olorunsogo, F.T. & Padayachee, N. (2002). Performance of recycled aggregate concrete monitoring by durability indexes. Cement and Concrete Research, 32, 179-185.
Pinzón, A. (2013). Formulación de lineamientos para la gestión de residuos de construcción y demolición (RCD) en Bogotá. Trabajo de tesis de grado. Especialización en planeación ambiental y gestión integral de los recursos naturales. Bogotá: Universidad Militar Nueva Granada.
Poon, C. & Chan, D. (2007). The use of recycled aggregate in concrete in Hong Kong. ResourConservRecycl, 50, 293-305.
Ravindrarajah, R.S. & Tam, T.C. (1985). Properties of concrete made with crushed concrete as coarse aggregate. Magazine of Concrete Research, 37.
Rehan, R. & Nehdi, N. (2005). Carbon dioxide emissions and climate change: policy implications for the cement industry. Environmental Science & Policy, 8(2), 105-114.
Report: Construction Materials Recycling Association. Concrete Recycling.org. (2013).
Report: European Aggregates Association (2012). Annual review 2011-2012. Brussels, Belgium.
Resolución 2397 de 2011 (abril 25), Por la cual se regula técnicamente el tratamiento o aprovechamiento de escombros en el Distrito Capital, artículo 4.
Roussat, N., Dujet, C. & Méhu, J. (2009). Choosing a sustainable demolition waste management strategy using multicriteria decision analysis. Waste management, 29(1), 12-20.
Roy, S. & Poh, K. (1999). Northwood. Durability of concrete accelerated carbonation and weathering studies, Build. Environ, 34, 597-606.
Shu, E. & Pen-Chi, C. (2012). CO2 Capture by Accelerated Carbonation of Alkaline Wastes: A Review on Its Principles and Applications. Aerosol and Air Quality Research, 12, 22.
Tam, V. et al. (2007). Removal of cement mortar remains from recycled aggregate using pre-soaking approaches. Resources. Conservation. Recycling, 50(1), 82–101.
Tateyashiki, H. et al. (2001). Properties of concrete with high quality recycled aggregate by heat and rubbing method. ProcJCI, 23(2), 61-66.
Tomosawa, F. & Noguchi, T. (2000). New technology for the recycling of concrete—Japanese experience. Concrete Technology for a Sustainable Development in the 21st Century. London/New York: E &FNSpon, 274-287.
Urge, D. (2007). Climate change mitigation in the building sector: the findings of the 4th Assessment report of the IPCC. Center for climate change and sustainable energy policy, 38.
Van, O. & Padovani, A. (2003). Cement manufacture and the environment. Part II: Environmental challenges and opportunities. J Ind Ecol, 7(1): 93-126.
Villamizar, L. (marzo-mayo de 2014). Revista Ingeniería y Tecnologías. Construcción, otro sector en la onda verde, 12-13.
Yamasali, A. (2003). An overview of CO2 mitigation options for global warming – emphasizing CO2 sequestration options. Journal of Chemical Engineering of Japan, 36(4), 361-375.
Zhonghe, S. et al. (2008). Rehydration reactivity of recycled mortar from concrete waste experienced to thermal treatment. Construction and Building Materials, 22, 1723–1729.