Publication: Influence of Ti–V content on (CrAlTiV)N coating: Structure and corrosion response
Files
Abstract (Spanish)
Abstract (English)
Extent
Collections
References
ASM international, ASM handbook. Volume 1: Properties and Selection: Irons, Steels, and High-Performance Alloys, 1997.
R.L.O. Basso, H.O. Pastore, V. Schmidt, I.J.R. Baumvol, S.A.C. Abarca, F.S. de Souza, A. Spinelli, C.A. Figueroa, C. Giacomelli, Microstructure and corrosion behaviour of pulsed plasma-nitrided AISI H13 tool steel, Corros. Sci. 52 (2010) 3133–3139, https://doi.org/10.1016/j.corsci.2010.05.036.
Y. Xie, G. Miyamoto, T. Furuhara, Nanosized Cr-N clustering in expanded austenite layer of low temperature plasma-nitrided Fe-35Ni-10Cr alloy, Scr. Mater. 213 (2022), 114637, https://doi.org/10.1016/j.scriptamat.2022.114637.
T.S. Lamim, E.A. Bernardelli, T. Bendo, C.H. Mello, C. Binder, A.N. Klein, Duplex surface treatment of sintered iron by plasma nitriding and plasma carburizing at low temperature, Surf. Coat. Technol. 375 (2019) 911–919, https://doi.org/ 10.1016/j.surfcoat.2019.07.068
F.A.P. Fernandes, S.C. Heck, C.A. Picone, L.C. Casteletti, On the wear and corrosion of plasma nitrided AISI H13, Surf. Coat. Technol. 381 (2020), 125216, https://doi. org/10.1016/j.surfcoat.2019.125216.
Z.-C. Chang, S.-C. Liang, S. Han, Y.-K. Chen, F.-S. Shieu, Characteristics of TiVCrAlZr multi-element nitride films prepared by reactive sputtering, Nucl. Instrum. Methods Phys. Res. B 268 (2010) 2504–2509, https://doi.org/10.1016/j. nimb.2010.05.039.
W. Li, P. Liu, P.K. Liaw, Microstructures and properties of high-entropy alloy films and coatings: a review, Mater. Res. Lett. 6 (2018) 199–229, https://doi.org/ 10.1080/21663831.2018.1434248.
] D. Depla, S. Mahieu, J.E. Greene, Sputter Deposition Process, in: P.M Martin (Ed.), Handbook of Deposition Technologies for Films and Coatings: Science, Technology, and Applications, Elsevier - William Andrew, 2010, pp. 253–296. Ed.(Chapter 5).
P. Panjan, A. Drnovˇsek, P. Gselman, M. Cekada, ˇ M. Panjan, Review of growth defects in thin films prepared by PVD techniques, Coatings 10 (2020) 447, https:// doi.org/10.3390/coatings10050447.
D.K. Merl, P. Panjan, M. Panjan, M. Cekada, ˇ The role of surface defects density on corrosion resistance of PVD hard coatings, plasma processes and polymers. 4 (2007) S613–S617. 10.1002/ppap.200731416.
M. Cekada, ˇ N. Radi´c, M. Jerˇcinovi´c, M. Panjan, P. Panjan, A. Drnovˇsek, T. Car, Growth defects in magnetron sputtered PVD films deposited in UHV environment, Vacuum 138 (2017) 213–217, https://doi.org/10.1016/j.vacuum.2016.12.012.
M. Fenker, M. Balzer, H. Kappl, Corrosion protection with hard coatings on steel : past approaches and current research efforts, Surf. Coat. Technol. 257 (2014) 182–205, https://doi.org/10.1016/j.surfcoat.2014.08.069.
P. Hones, R. Sanjin´es, F. L´evy, Sputter deposited chromium nitride based ternary compounds for hard coatings, Thin Solid Films 332 (1998) 240–246, https://doi. org/10.1016/S0040-6090(98)00992-4.
A.K. Tareen, G.S. Priyanga, S. Behara, T. Thomas, M. Yang, Mixed ternary transition metal nitrides: a comprehensive review of synthesis, electronic structure, and properties of engineering relevance, Prog. Solid State Chem. 53 (2019) 1–26, https://doi.org/10.1016/j.progsolidstchem.2018.11.001.
] H.C. Barshilia, N. Selvakumar, B. Deepthu, K.S. Rajam, A comparative study of reactive direct current magnetron sputtered CrAlN and CrN coatings, Surf. Coat. Technol. 201 (2006) 2193–2201.
S. Anwar, S. Anwar, B. Priyadarshini, R.S. Sankar, Evaluation of structural and mechanical properties of CrAlN single layer coating deposited by reactive magnetron sputtering, Mater. Chem. Phys. 292 (2022), 126873, https://doi.org/ 10.1016/j.matchemphys.2022.126873.
F. Cai, Q. Yang, X. Huang, R. Wei, Microstructure and corrosion behavior of CrN and CrSiCN coatings, J. Mater. Eng. Perform. 19 (2010) 721–727, https://doi.org/ 10.1007/s11665-009-9534-3.
X.H. Yan, J.S. Li, W.R. Zhang, Y. Zhang, A brief review of high-entropy films, Mater. Chem. Phys. 210 (2018) 12–19, https://doi.org/10.1016/j. matchemphys.2017.07.078.
M. Nussbaum, M. Arab Pour Yazdi, A. Michau, E. Monsifrot, F. Schuster, H. Maskrot, A. Billard, Mechanical properties and high temperature oxidation resistance of (AlCrTiV)N coatings synthesized by cathodic arc deposition, Surf. Coat. Technol. 434 (2022), 128228, https://doi.org/10.1016/j. surfcoat.2022.128228.
X. Liu, J. Kavanagh, A. Matthews, A. Leyland, The combined effects of Cu and Ag on the nanostructure and mechanical properties of CrCuAgN PVD coatings, Surf. Coat. Technol. 284 (2015) 101–111, https://doi.org/10.1016/j. surfcoat.2015.08.070.
E. Kusano, Structure-zone modeling of Sputter-deposited thin films: a brief review, Appl. Sci. Conv. Technol. 28 (2019) 179–185, https://doi.org/10.5757/ asct.2019.28.6.179.
Z. Qi, Z. Wu, D. Zhang, B. Wei, J. Wang, Z. Wang, Effect of sputtering power on the chemical composition, microstructure and mechanical properties of CrNx hard coatings deposited by reactive magnetron sputtering, Vacuum 145 (2017) 136–143, https://doi.org/10.1016/j.vacuum.2017.08.036.
S. Tan, X. Zhang, X. Wu, F. Fang, J. Jiang, Comparison of chromium nitride coatings deposited by DC and RF magnetron sputtering, Thin Solid Films 519 (2011) 2116–2120, https://doi.org/10.1016/j.tsf.2010.10.067.
E. Kusano, Revisitation of the structure zone model based on the investigation of the structure and properties of Ti, Zr, and Hf thin films deposited at 70–600 ◦C using DC magnetron sputtering, J. Vac. Sci. Technol. A 36 (2018), 041506, https:// doi.org/10.1116/1.5036555.
A. Kumar, R. Bauri, A. Naskar, A.K. Chattopadhyay, Characterization of HiPIMS and DCMS deposited TiAlN coatings and machining performance evaluation in high speed dry machining of low and high carbon steel, Surf. Coat. Technol. 417 (2021), 127180, https://doi.org/10.1016/j.surfcoat.2021.127180.
J.A. Thornton, Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings, J. Vac. Sci. Tecnol. 11 (1974) 666–670.
B.A. Movchan, A.V. Demchishin, Structure and properties of thick condensates of nickel, titanium, tungsten, aluminum oxides, and zirconium dioxide in vacuum, Fiz. Metal. Metalloved. (1969).
A. Anders, A structure zone diagram including plasma-based deposition and ion etching, Thin Solid Films 518 (2010) 4087–4090, https://doi.org/10.1016/j. tsf.2009.10.145.
D. Bhaduri, A. Ghosh, S. Gangopadhyay, S. Paul, Effect of target frequency, bias voltage and bias frequency on microstructure and mechanical properties of pulsed DC CFUBM sputtered TiN coating, Surf. Coat. Technol. 204 (2010) 3684–3697, https://doi.org/10.1016/j.surfcoat.2010.04.047.
X. Sui, G. Li, H. Zhou, S. Zhang, Y. Yu, Q. Wang, J. Hao, Evolution behavior of oxide scales of TiAlCrN coatings at high temperature, Surf. Coat. Technol. 360 (2019) 133–139, https://doi.org/10.1016/j.surfcoat.2019.01.016.
A.E. Reiter, V.H. Derflinger, B. Handelmann, T. Bachmann, B. Sartory, Investigation of the properties of Al1-xCrxN coatings prepared by cathodic arc evaporation, Surf. Coat. Technol. 200 (2005) 2114–2122.
X. Zhang, W. Chang, H. Zhang, Z. Zhou, S. Xie, S. Duo, Al content effects on mechanical and Tribological properties of Cr/CrN/CrAlN multilayer nanocomposite coatings, IOP Conf. Ser. Mater. Sci. Eng 678 (2019), https://doi. org/10.1088/1757-899X/678/1/012163.
M.B. Kanoun, S. Goumri-Said, Effect of alloying on elastic properties of ZrN based transition metal nitride alloys, Surf. Coat. Technol. 255 (2014) 140–145, https:// doi.org/10.1016/j.surfcoat.2014.03.048.
J. Lin, J.J. Moore, B. Mishra, M. Pinkas, W.D. Sproul, J.A. Rees, Effect of asynchronous pulsing parameters on the structure and properties of CrAlN films deposited by pulsed closed field unbalanced magnetron sputtering (P-CFUBMS), Surf. Coat. Technol. 202 (2008) 1418–1436, https://doi.org/10.1016/j. surfcoat.2007.06.068.
S. Khamseh, M. Nose, T. Kawabata, T. Nagae, K. Matsuda, S. Ikeno, A comparative study of CrAlN films synthesized by dc and pulsed dc reactive magnetron facing target sputtering system with different pulse frequencies, J. Alloys Compd. 508 (2010) 191–195, https://doi.org/10.1016/j.jallcom.2010.08.042.
B. Gui, H. Zhou, J. Zheng, X. Liu, X. Feng, Y. Zhang, L. Yang, Microstructure and properties of TiAlCrN ceramic coatings deposited by hybrid HiPIMS/DC magnetron co-sputtering, Ceram. Int. (2020), https://doi.org/10.1016/j. ceramint.2020.11.175.
C. Meng, L. Yang, Y. Wu, J. Tan, W. Dang, X. He, X. Ma, Study of the oxidation behavior of CrN coating on Zr alloy in air, J. Nucl. Mater. 515 (2019) 354–369, https://doi.org/10.1016/j.jnucmat.2019.01.006.
D. Wang, S. Lin, L. Liu, H. Yang, J. Shi, B. Jiang, K. Zhou, X. Zhang, Micro-nano multilayer structure design and solid particle erosion resistance performance of CrAlNx/CrAlN coating, Vacuum 172 (2020), 109064, https://doi.org/10.1016/j. vacuum.2019.109064.
O.V. Maksakova, S. Simoẽs, A.D. Pogrebnjak, O.V. Bondar, Y.O. Kravchenko, T. N. Koltunowicz, Z.K. Shaimardanov, Multilayered ZrN/CrN coatings with enhanced thermal and mechanical properties, J. Alloys Compd. 776 (2019) 679–690, https://doi.org/10.1016/j.jallcom.2018.10.342.
W. Tillmann, M. Dildrop, Influence of Si content on mechanical and tribological properties of TiAlSiN PVD coatings at elevated temperatures, Surf. Coat. Technol. 321 (2017) 448–454, https://doi.org/10.1016/j.surfcoat.2017.05.014
W. Tillmann, D. Kokalj, D. Stangier, M. Paulus, C. Sternemann, M. Tolan, Investigation of the influence of the vanadium content on the high temperature tribo-mechanical properties of DC magnetron sputtered AlCrVN thin films, Surf. Coat. Technol. 328 (2017) 172–181.
K.H. Lee, C.H. Park, Y.S. Yoon, J.J. Lee, Structure and properties of (Ti1-xCrx)N coatings produced by the ion-plating method, Thin Solid Films 385 (2001) 167–173, https://doi.org/10.1016/S0040-6090(00)01911-8.
V.V.A. Thampi, A. Bendavid, B. Subramanian, Nanostructured TiCrN thin films by pulsed magnetron sputtering for cutting tool applications, Ceram. Int. 42 (2016) 9940–9948, https://doi.org/10.1016/j.ceramint.2016.03.095.
C.A. Escobar, J.C. Caicedo, W. Aperador, Corrosion resistant surface for vanadium nitride and hafnium nitride layers as function of grain size, J. Phys. Chem. Solids 75 (2014) 23–30, https://doi.org/10.1016/j.jpcs.2013.07.024.
H. Te Hsueh, W.J. Shen, M.H. Tsai, J.W. Yeh, Effect of nitrogen content and substrate bias on mechanical and corrosion properties of high-entropy films (AlCrSiTiZr) 100-xN x, Surf. Coat. Technol. 206 (2012) 4106–4112, https://doi. org/10.1016/j.surfcoat.2012.03.096.