UA-61751701-2

Comparación entre regresión tipo LASSO y redes neuronales en la predicción del esfuerzo de fisuración y su elongación asociada del UHPFRC sometido a tracción directa
    • español
    • English
EscuelaIng
  • English 
    • español
    • English
  • Login
  • Inicio
  • Guías de Uso
    • Directrices
    • Procedimientos de Trabajo de Grado
    • Guía de Autoarchivo
    • Formato de Autorización para Publicación
  • Navegar
    • Comunidades
    • Autores
    • Títulos
    • Fechas
    • Materias
    • Tipo de Material
  • Investigadores
  • Organizaciones
  • Proyectos

Repositorio Digital

  • Comunities Comunities
  • Authors Authors
  • Titles Titles
  • Dates Dates
  • Subjects Subjects
  • Resource Type Resource Type
View Item 
  •   DSpace Home
  • 1- Tesis de Grado y Trabajos Dirigidos
  • C - Ingeniería Civil
  • CA - Trabajos Dirigidos de Civil
  • View Item
  •   DSpace Home
  • 1- Tesis de Grado y Trabajos Dirigidos
  • C - Ingeniería Civil
  • CA - Trabajos Dirigidos de Civil
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Cambiar vista

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsResource TypeThis CollectionBy Issue DateAuthorsTitlesSubjectsResource Type

My Account

LoginRegister

Statistics

View Usage Statistics

Comparación entre regresión tipo LASSO y redes neuronales en la predicción del esfuerzo de fisuración y su elongación asociada del UHPFRC sometido a tracción directa


Chaparro Ruiz, Diego Andrés

Trabajo de grado - Pregrado

2020

Escuela Colombiana de Ingeniería Julio Garavito

Comportamiento a tracción directaBuscar en Repositorio UMECIT
Redes neuronales artificialesBuscar en Repositorio UMECIT
Regresión tipo LASSOBuscar en Repositorio UMECIT
UHPFRCBuscar en Repositorio UMECIT
Behavior to direct tractionBuscar en Repositorio UMECIT
Artificial neural networksBuscar en Repositorio UMECIT
LASSO regressionBuscar en Repositorio UMECIT
UHPFRCBuscar en Repositorio UMECIT

La presente investigación tiene como finalidad modelar el comportamiento a tracción directa de los concretos de ultra alto desempeño reforzado con fibras (UHPFRC). Para este análisis se utilizaron los métodos de regresión tipo LASSO y redes neuronales para predecir la tensión y elongación que provocan la primera fisura en el concreto. Para la validación de los modelos desarrollados se utilizaron los siguientes índices estadísticos: error absoluto medio (MAE), raíz del error cuadrático medio (RSME), relación entre el RSME y la desviación estándar de los datos medidos (RSR), error de sesgo medio normalizado (NMBE), coeficiente de eficiencia de Nash-Sutcliff (E), y coeficiente de determinación múltiple (R2). Para el diseño de mezcla de concretos UHPFRC se agregan fibras de refuerzo para aumentar la resistencia a tracción directa. Estas fibras están distribuidas uniformemente y proporcionan propiedades de ductilidad a los concretos de ultra alto desempeño, ya que estos concretos sin fibra tienen un comportamiento frágil. En el entrenamiento de los modelos preventivos se utilizaron 934 datos aleatorios del comportamiento a tracción directa del UHPFRC con información sobre los parámetros σcc y εcc, que representan el estado tensional correspondiente a la tensión de fisuración del UHPFRC. Durante el desarrollo algorítmico de los modelos, estos parámetros serán codificados como Y1 y Y2 respectivamente. Para construir un modelo preciso y con resultados adecuados fue necesario la detección y tratamiento de valores atípicos. Al final de este proceso se eliminaron 196 datos de la base de datos, dejando 738 para entrenamiento y testeo de los modelos de regresión LASSO y redes neuronales. Además, se realizó la partición de los datos para facilitar el entrenamiento y testeo y comprobar la eficiencia de la red neuronal y la regresión tipo LASSO. De esta forma, se utilizaron el 75% de los datos disponibles para entrenamiento de los modelos, quedando el 25% restante para labores de validación de los modelos. Como conclusión del presente trabajo de investigación, se desprende que la herramienta más precisa para la predicción de las variables Y1 y Y2, alcanzándose valores de R2 de 0,9218 y 0,8075 respectivamente en los subconjuntos de validación. La regresión tipo LASSO alcanzo valores de R2 para estas mismas variables de 0,6771 y 0,6579 respectivamente, claramente inferiores a los alcanzados por los modelos de redes neuronales.

https://repositorio.escuelaing.edu.co/handle/001/1324

  • CA - Trabajos Dirigidos de Civil [65]

Descripción: Chaparro Ruiz Diego Andrés-2020.pdf
Título: Chaparro Ruiz Diego Andrés-2020.pdf
Tamaño: 1.250Mb

Unicordoba LogoPDFOpen AccessFLIPLEER EN FLIP

Descripción: Autorización.pdf
Título: Autorización.pdf
Tamaño: 796.8Kb

Unicordoba LogoPDFClosed Access

Show full item record

Cita

Cómo citar

Cómo citar

Miniatura

Thumbnail

Gestores Bibliográficos

Exportar a Bibtex

Exportar a RIS

Exportar a Excel

Buscar en google Schoolar

Buscar en microsoft academic

untranslated

Código QR

Envíos recientes

    No hay artículos recientes

Oferta académica

Carreras profesionales

Especializaciones

Maestrías

Doctorado

Nustros Campus

Introducción al campus

Tecnología

Fortalezas

Premios y reconocimientos

Flora y fauna

Visita el campus

Internacionalización

Programas y alianzas

Movilidad

Sobre la Escuela y Bogotá

Convenios internacionales, nacionales y con colegios

Ayuda

PQRSFC

Centro de Ayuda

Contáctenos

Habeas Data

Centro de Servicios Tecnológicos

Directorio Escuela

acriditación institucional
icoMaps

AK. 45 No. 205 - 59, Autopista Norte.

PBX: +57(1) 668 3600 - Bogotá.

Línea nacional gratuita:

018000112668.

Sistema DSPACE - Metabiblioteca | logo