Show simple item record

dc.contributor.authorOrtiz Moreno, Martha Lucia
dc.contributor.authorCárdenas Poblador, Jaleydi
dc.contributor.authorAgredo, Julián
dc.contributor.authorSolarte Murillo, Laura Vanessa
dc.date.accessioned2021-05-05T03:50:45Z
dc.date.accessioned2021-10-01T17:20:49Z
dc.date.available2020
dc.date.available2021-05-05T03:50:45Z
dc.date.available2021-10-01T17:20:49Z
dc.date.issued2020
dc.identifier.issn0122-7483
dc.identifier.urihttps://repositorio.escuelaing.edu.co/handle/001/1389
dc.description.abstractMathematical models provide information about population dynamics under different conditions. In the study, four models were evaluated and employed to describe the growth kinetics of Nostoc ellipsosporum with different light wavelengths: Baranyi-Roberts, Modified Gompertz, Modified Logistic, and Richards. N. ellipsosporum was grown in BG-11 liquid medium for 9 days, using 12 hours of photoperiod and the following treatments: white light (400-800 nm), red light (650-800 nm), yellow light (550-580 nm) and blue light (460-480 nm). Each experiment was performed in triplicate. The optical density (OD) was measured on days 1, 3, 5, 7 and 9, using a spectrophotometer at 650 nm. The maximum cell growth was obtained under white light (OD650 : 0.090 ± 0.008), followed by the yellow light (OD650 : 0.057 ± 0.004). Conversely, blue light showed a marked inhibitory effect on the growth of N. ellipsosporum (OD650 : 0.009 ± 0.001). The results revealed that the Baranyi-Roberts model had a better fit with the experimental data from N. ellipsosporum growth in all four treatments. The findings from this modeling study could be used in several biotechnological applications that require the production of N. ellipsosporum and its bioproducts.eng
dc.description.abstractLos modelos matemáticos proveen información sobre las dinámicas poblacionales bajo diferentes condiciones. En el presente estudio, se evaluaron cuatro modelos (Baranyi-Roberts, Gompertz Modificado, Logístico Modificado y Richards) y se emplearon para describir la cinética de crecimiento de Nostoc ellipsosporum con diferentes longitudes de onda de luz. N. ellipsosporum creció en medio líquido BG-11 por 9 días, usando un fotoperiodo de 12 horas y los siguientes tratamientos: luz blanca (400-800 nm), luz roja (650-800 nm), luz amarilla (550-580 nm) y luz azul (460-480 nm). Cada experimento se llevó a cabo por triplicado. La densidad óptica (OD) se midió en los días 1, 3, 5, 7 y 9 usando un espectrofotómetro a 650 nm. El máximo crecimiento celular se obtuvo con la longitud de onda de la luz blanca (OD650 : 0.090 ± 0.008), seguido de la luz amarilla (OD650 : 0.057 ± 0.004). Por el contrario, la luz azul mostró un marcado efecto inhibitorio en el crecimiento de N. ellipsosporum (OD650 : 0.009 ± 0.001). Los resultados revelaron que el modelo Baranyi-Roberts se ajustó mejor a los datos experimentales de crecimiento de N. ellipsosporum en los cuatro tratamientos. Los hallazgos de este estudio de modelación se pueden usar en diversas aplicaciones biotecnológicas que requieran la producción de N. ellipsosporum y sus bioproductos.spa
dc.format.extent36 páginas.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherPontificia Universidad Javerianaspa
dc.publisherJuan Carlos Salcedo-Reyes (salcedo.juan@javeriana.edu.co)spa
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/spa
dc.sourcehttps://revistas.javeriana.edu.co/index.php/scientarium/article/view/23864spa
dc.titleModeling the effects of light wavelength on the growth of Nostoc ellipsosporumspa
dc.typeArtículo de revistaspa
dc.description.notes1. Universidad de los Llanos, Faculty of Basic Sciences and Engineering, Department of Biology and Chemistry, Biorinoquia and SUSA Groups, Km 12 Highway Villavicencio - Puerto López, Villavicencio - Colombia, zip code 1745.spa
dc.description.notes2. Universidad de los Llanos, Faculty of Basic Sciences and Engineering, Department of Mathematics and Physics, Sistemas Dinámicos Group, Km 12 Highway Villavicencio - Puerto López, Villavicencio - Colombia, zip code 1745.spa
dc.description.notes3. Escuela Colombiana de Ingeniería Julio Garavito, Department of Mathematics, GIMATH (Grupo de investigación en Matemáticas de la Escuela Colombiana de Ingeniería) Group, Autopista Norte AK 45 No. 205-59, Bogotá - Colombia, zip code 111166.spa
dc.description.notes4. Universidad de los Llanos, Faculty of Basic Sciences and Engineering, Department of Biology and Chemistry, Biorinoquia Group, Km 12 Highway Villavicencio - Puerto López, Villavicencio - Colombia, zip code 1745. * mlortiz@unillanos.edu.cospa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.contributor.researchgroupMatemáticasspa
dc.identifier.doi10.11144/Javeriana.SC25-1.mte
dc.identifier.urlhttps://doi.org/10.11144/Javeriana.SC25-1.mte
dc.publisher.placeBogotá, Colombiaspa
dc.relation.citationeditionUniversitas Scientiarum Vol. 25 (1): 113-148spa
dc.relation.citationendpage148spa
dc.relation.citationissue1spa
dc.relation.citationstartpage113spa
dc.relation.citationvolume25spa
dc.relation.indexedN/Aspa
dc.relation.ispartofjournalUniversitas Scientiarumeng
dc.relation.referencesAbed RMM, Dobretsov S, & Sudesh K. Applications of cyanobacteria in biotechnology. Journal of Applied Microbiology, 106(1), 1-12, 2009.spa
dc.relation.referencesAhmad SA, Shukor MS, Masdor NA, Shamaan NA, Roslan MAH, Shukor MY. The growth of Paracoccus sp. SKG on acetonitrile is best modelled using the Buchanan three phase model. Journal of Environmental Bioremediation and Toxicology, 3 (1): 1-5, 2015.eng
dc.relation.referencesAlgal culturing techniques. (R.A. Andersen Ed.). Burlington: Phycological society of America, 2005.eng
dc.relation.referencesAndersen RA. Algal culturing techniques, Phycological society of America, Burlington, USA, 2005.eng
dc.relation.referencesArteni AA, Ajlani G, & Boekema EJ. Structural organization of phycobilisomes from Synechocystis sp. strain PCC6803 and their interaction with the membrane. Biochimica et Biophysica Acta, 1787 (4), 272-279, 2009. doi: 10.1016/j.bbabio.2009.01.009eng
dc.relation.referencesAtta M, Idris A, Bukhari A, & Wahidin S. Intensity of blue LED light: A potential stimulus for biomass and lipid content in fresh water microalgae Chlorella vulgaris. Bioresource Technology, 148, 373378, 2013. doi: 10.1016/j.biortech.2013.08.162eng
dc.relation.referencesBaranyi J, & Roberts TA. A dynamic approach to predicting bacterial growth in food. International Journal of Food Microbiology, 23(3-4), 277-294, 1994. doi: 10.1016/0168-1605(94)90157-0eng
dc.relation.referencesBaranyi J, & Roberts TA. Mathematics of predictive food microbiology. International Journal of Food Microbiology, 26(2), 199218, 1995. doi: 10.1016/0168-1605(94)00121-Leng
dc.relation.referencesBaranyi J, Robinson TP, Kaloti A, & Mackey BM. Predicting growth of Brochothrix thermosphacta at changing temperature. International Journal of Food Microbiology, 27(1), 61-75, 1995. doi: 10.1016/0168-1605(94)00154-Xeng
dc.relation.referencesBarsanti L, & Gualtieri P. Algae: anatomy, biochemistry and biotechnology. Boca Raton: CRC Press Taylor & Francis group, 2006.eng
dc.relation.referencesBelda-Galbis CM, Martínez A, Rodrigo D. Antimicrobial effect of carvacrol on Escherichia coli K12 growth at different temperatures, 2011. doi: 10.1142/9789814354868_0015eng
dc.relation.referencesSilva APR, Longhi DA, Dalcanton F, Aragão GMF. Modelling the growth of lactic acid bacteria at different temperatures. Brazilian archives of biology and technology, 61: e18160159, 2018. doi: 10.1590/1678-4324-2018160159eng
dc.relation.referencesSingh NK, Sonani RR, Rastogi RP, & Madamwar D. The phycobilisomes: an early requisite for effcient photosynthesis in cyanobacteria. EXCLI journal, 14, 268, 2015. doi: 10.17179/excli2014-723eng
dc.relation.referencesSingh RS, Walia AK, Khattar JS, Singh DP, & Kennedy JF. Cyanobacterial lectins characteristics and their role as antiviral agents. International Journal of Biological Macromolecules, 102, 475-496, 2017. doi: 10.1016/j.ijbiomac.2017.04.041eng
dc.relation.referencesSingh S, & Singh P. Effect of temperature and light on the growth of algae species: a review. Renewable and Sustainable Energy Reviews, 50, 431-444, 2015. doi: 10.1016/j.rser.2015.05.024eng
dc.relation.referencesSinha RP, Ambasht NK, Sinha JP, & Ha¨der DP. Wavelengthdependent induction of a mycosporine-like amino acid in a ricefield cyanobacterium, Nostoc commune: role of inhibitors and salt stress. Photochemical and Photobiological Sciences, 2, 171-6, 2003. doi: 10.1039/b204167geng
dc.relation.referencesSolhaug KA, Xie L, Gauslaa Y. Unequal allocation of excitation energy between photosystem II and I reduces cyanolichen photosynthesis in blue light. Plant and Cell Physiology, 55: 1404-1414, 2014. doi: 10.1093/pcp/pcu065eng
dc.relation.referencesSupriyanto, Noguchi R, Ahamed T, Rani DS, Sakurai K, Nasution MA, Wibawa DS, Demura M, & Watanabe MM. Artificial neural networks model for estimating growth of polyculture microalgae in an open raceway pond. Biosystems Engineering, 177, 122-129, 2019. doi: 10.1016/j.biosystemseng.2018.10.002eng
dc.relation.referencesSwinnen IAM, Bernaerts K, Dens EJ, Geeraerd AH, & Van Impe JF. Predictive modelling of the microbial lag phase: a review. International journal of food microbiology, 94(2), 137-159. 2004. doi: 10.1016/j.ijfoodmicro.2004.01.006eng
dc.relation.referencesTeo CL, Atta M, Bukhari A, Taisir M, Yusuf AM, & Idris A. 2014. Enhancing growth and lipid production of marine microalgae for biodiesel production via the use of different LED wavelengths. Bioresource technology, 162, 38-44. doi: 10.1016/j.biortech.2014.03.113eng
dc.relation.referencesTevatia R, Demirel Y, Blum P. Kinetic modeling of photoautotropic growth and neutral lipid accumulation in terms of ammonium concentration in Chlamydomonas reinhardtii. Bioresource Technology, 119: 419-424, 2012. doi: 10.1016/j.biortech.2012.05.124eng
dc.relation.referencesBenítez REH, Vidal DRA, & Guerrero JV. Efecto de la Inoculación de Cianobacterias en Cultivos de Interés Comercial en Zonas Semiáridas de La Guajira-Colombia. Revista Colombiana de Investigaciones Agroindustriales, 5(1), 20-31, 2018. doi: 10.23850/24220582.889spa
dc.relation.referencesTiwari ON, Devi WI, Silvia C, Devi AT, Oinam G, Singh OA, Singh KO, Indrama T, Sharma AS, Khangembam R, Shamjetshaban M, Miranda L, & Prasanna R. Modula-tion of phycobiliprotein production in Nostoc muscorum through culture manipulation. Journal of Applied Biology & Biotechnology, 3(04), 011-016, 2015. doi: 10.7324/JABB.2015.3403eng
dc.relation.referencesTóth TN, Chukhutsina V, Domonkos I, Knoppová J, Komenda J, Kis M, Gombos ZJB. Carotenoids are essential for the assembly of cyanobacterial photosynthetic complexes. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 1847(10), 1153-1165, 2015. doi: 10.1016/j.bbabio.2015.05.020eng
dc.relation.referencesTrejos VM, Alzate JF, Garcia MÁG. Descripción matemática y análisis de estabilidad de procesos fermentativos, text, 76 (158): 111-121, 2009.spa
dc.relation.referencesVanegas DM, Ramírez ME. Correlación del crecimiento de Pseudomonas fluorescens en la producción de polihidroxialcanoatos de cadena media (PHAMCL) mediante modelos primarios de Gompertz, Logístico y Baranyi.Información tecnológica, 27 (2): 87-96, 2016. doi: 10.4067/S0718-07642016000200011eng
dc.relation.referencesXiong S, Fan J, & Kitazato K. The antiviral protein cyanovirin-N: the current state of its production and applications. Applied Microbiology and Biotechnology, 86, 805-812, 2010. doi: 10.1007/s00253-010-2470-1eng
dc.relation.referencesXu L, Yong H, Tu X, Wanga Q, & Fan J. Physiological and proteomic analysis of Nostoc flagelliforme in response to alkaline pH shift for polysaccharide accumulation. Algal Research, 39, 101444, 2019. doi: 10.1016/j.algal.2019.101444eng
dc.relation.referencesYang YW, Yin YC, Li ZK, Huang D, Shang JL, Chen M, & Qiu BS. Orange and red carotenoid proteins are involved in the adaptation of the terrestrial cyanobacterium Nostoc agelliforme to desiccation. Photosynthesis Research, 140 (1), 103-113, 2019. doi: 10.1007/s11120-019-00629-6eng
dc.relation.referencesYou Z, Xu H, Zhang S, Kim H, Chiang PC, Yun W, Zhang L, He M. Comparison of petroleum hydrocarbons degradation by Klebsiella pneumoniae and Pseudomonas aeruginosa. Applied Sciences, 8: 2551, 2018. doi: 10.3390/app8122551eng
dc.relation.referencesZhao X, Ma R, Liu X, Ho SH, Xie Y, & Chen J. Strategies related to light quality and temperature to improve lutein production of marine microalga Chlamydomonas sp. Bioprocess and Biosystems Engineering, 42 (3), 435-443, 2019. doi: 10.1007/s00449-018-2047-4eng
dc.relation.referencesZnad H, Al Ketife AM, & Judd S. Enhancement of CO2 biofixation and lipid production by Chlorella vulgaris using coloured polypropylene film. Environmental Technology, 1-7, 2018. doi: 10.1080/09593330.2018.1437778eng
dc.relation.referencesBland E, & Angenent LTJ. Pigment-targeted light wavelength and intensity promotes effcient photoautotrophic growth of Cyanobacteria. Bioresource technology, 216, 579-586, 2016. doi: 10.1016/j.biortech.2016.05.116eng
dc.relation.referencesZwietering MH, Jongenburger I, Rombouts FM, & Van’t Riet K. Modeling of the bacterial growth curve. Applied and environmental microbiology, 56(6), 1875-1881, 1990. doi: 0099-2240/90/061875-07$02.00/0eng
dc.relation.referencesCamargo EC, & Lombardi AT. Effect of cement industry flue gas simulation on the physiology and photosynthetic performance of Chlorella sorokiniana. Journal of Ap-plied Phycology, 30 (2), 861-871, 2018. doi: 10.1007/s10811-017-1291-3eng
dc.relation.referencesCastillo CMN, Rivera FCR, Díaz LE, Díaz AGL. Evaluación de las condiciones de crecimiento celular para la producción de astaxantina a patir de la microalga Haematococcus pluvialis, Nova, 15 (28): 19-31, 2017.spa
dc.relation.referencesCayré ME, Vignolo GM, Garro OA. Selección de un modelo primario para describir la curva de crecimiento de bacterias lácticas y Brochothrix thermosphacta sobre emulsiones cárnicas cocidas, Información Tecnológica, 18(3): 23-29, 2007. doi: 10.4067/S0718-07642007000300004spa
dc.relation.referencesCelekli A, Yavuzatmaca M, & Bozkurt H. Modeling of biomass production by Spirulina platensis as function of phosphate concentrations and pH regimes. Bioresource Technology, 100, 3625-3629, 2009. doi: 10.1016/j.biortech.2009.02.055eng
dc.relation.referencesCepoi L. Chapter 11: Environmental and Technological Stresses and Their Management in Cyanobacteria. In: Cyanobacteria From Basic Science to Applications. Mishra AK, Tiwari DN, & Rai AN (Eds.). Elsevier, 217-244, 2019.eng
dc.relation.referencesCharlebois DA, Balázsi G. Modeling cell population dynamics. In Silico Biology, 13 (1-2): 21-39, 2019. doi: 10.3233/ISB-180470eng
dc.relation.referencesChen Q, Montesarchio D, & Hellingwerf KJ. ‘Direct conversion’: artificial photosynthesis with cyanobacteria. In Advances in Botanical Research, 79, 43-62, 2016. doi: 10.1016/bs.abr.2016.03.001eng
dc.relation.referencesChiu SY, Kao CY, Chen CH, Kuan TC, Ong SC, & Lin CS. Reduction of CO2 by a high-density culture of Chlorella sp. in a semicontinuous photobioreactor. Bioresource Technology, 99, 3389-3396, 2008. doi: 10.1016/j.biortech.2007.08.013eng
dc.relation.referencesCibichakravarthy B, Venkatachalam S, & Prabagaran SR. Chapter 9: Unleashing Extremophilic Metabolites and Its Industrial Perspectives. In: Gupta BK, & Pande A (Eds). New and Future Developments in Microbial Biotechnology and Bioengineering. 119-130, 2019. doi: 10.1016/B978-0-444-63504-4.00009-8eng
dc.relation.referencesCrettaz Minaglia MC, Rosso L, Aranda O, Sedan D, Juárez I, Ventosi E, Gian-nuzzi LJI. Modelado matemático del crecimiento de Microcystis aeruginosa en condiciones de laboratorio bajo diferentes temperaturas. Ingeniería Sanitaria y Ambiental, 61-67, 2017.spa
dc.relation.referencesCrnkovic CM, May DS, & Orjala J. The impact of culture conditions on growth and metabolomic profiles of freshwater cyanobacteria. Journal of Applied Phycology, 1-10, 2017. doi: 10.1007/s10811-017-1275-3eng
dc.relation.referencesCui L, Xu H, Zhu Z, & Gao X. The effects of the exopolysaccharide and growth rate on the morphogenesis of the terrestrial filamentous cyanobacterium Nostoc flagelliforme. Biology open, 6(9), 1329-1335, 2017. doi: 10.1242/bio.026955eng
dc.relation.referencesDalgaard P, Koutsoumanis K. Comparison of maximum specific growth rates and lag times estimated from absorbance and viable count data by different mathematical models. Journal of Microbiological Methods, 43: 183-196, 2001. doi: 10.1016/s0167-7012(00)00219-0eng
dc.relation.referencesDalgaard P, Ross T, Kamperman L, Neumeyer K, McMeekin TA. Estimation of bacterial growth rates from turbidimetric and viable count data. International Journal of Food Microbiology, 23: 391-404, 1994. doi: 10.1016/0168-1605(94)90165-1eng
dc.relation.referencesDas P, Lei W, Aziz SS, & Obbard JP. Enhanced algae growth in both phototrophic and mixotrophic culture under blue light. Bioresource Technology, 102, 3883-3887, 2011. doi: 10.1016/j.biortech.2010.11.102eng
dc.relation.referencesDa Silva Ferreira V, & Sant’Anna C. Impact of culture conditions on the chlorophyll content of microalgae for biotechnological applications. World J Microbiol Biotechnol, 33(1), 20, 2017. doi: 10.1007/s11274-016-2181-6eng
dc.relation.referencesDe Oliveira CA, Castro-Oliveira W, & Rocha SM. Effect of light intensity on the production of pigments in Nostoc spp. European Journal of Biology and Medical Science Research, 2(1), 23-36, 2014.eng
dc.relation.referencesDelattre C, Pierre G, Laroche C, & Michaud P. Production, extraction and characterization of microalgal and cyanobacterial exopolysaccharides. Biotechnol Adv, 34(7), 1159-1179, 2016. doi: 10.1016/j.biotechadv.2016.08.001eng
dc.relation.referencesDhar DW, Prasanna R, Pabbi S, & Vishwakarma R. Significance of cyanobacteria as inoculants in agriculture. In Algal Biorefinery: An Integrated Approach (pp. 339-374): Springer. 2015. doi: 10.1007/978-3-319-22813-6_16eng
dc.relation.referencesFuentes J, Garbayo I, Cuaresma M, Montero Z, González-del-Valle M, & Vílchez C. Impact of microalgae-bacteria interactions on the production of algal biomass and associated compounds. Marine Drugs, 14 (5), 100, 2016. doi: 10.3390/md14050100eng
dc.relation.referencesGarlapati D, Chandrasekaran M, Devanesan A, Mathimani T, & Pugazhendhi A. Role of cyanobacteria in agricultural and industrial sectors: an outlook on economically important byproducts. Applied Microbiology and Biotechnology, 103 (12), 4709-4721, 2019. doi: 10.1007/s00253-019-09811-1eng
dc.relation.referencesGaytán-Luna DE, Ochoa-Alfaro AE, Rocha-Uribe A, PérezMartínez AS, Alpuche-Solís Á, & Soria-Guerra RE. Effect of green and red light in lipid accumulation and transcriptional profile of genes implicated in lipid biosynthesis in Chlamydomonas reinhardtii. Biotechnol Prog, 32(6), 1404-1411, 2016. doi: 10.1002/btpr.2368eng
dc.relation.referencesGompertz B. On the nature of the function expressive of the law of human mortality, and on a new mode of determining the value of life contingencies. Philosophical transactions of the Royal Society of London, 115, 513-583, 1825. doi: 10.1098/rstl.1825.0026eng
dc.relation.referencesGriffiths MJ, Garcin C, Van Hille RP, & Harrison ST. Interference by pigment in the estimation of microalgal biomass concentration by optical density. Journal of Microbiological Methods, 85(2), 119-123, 2011. doi: 10.1016/j.mimet.2011.02.005eng
dc.relation.referencesGuo F, Zhao JAL, & Yang X. Life cycle assessment of microalgaebased aviation fuel: Influence of lipid content with specific productivity and nitrogen nutrient effects. Bioresource Technology, 221, 350-357, 2016. doi: 10.1016/j.biortech.2016.09.044eng
dc.relation.referencesGupta S, Cox S, Rajauria G, Jaiswal AK, Abu-Ghannam N. Growth inhibition of common food spoilage and pathogenic microorganisms in the presence of brown seaweed extracts, Food and Bioprocess Technology, 5: 1907-1916, 2012. doi: 10.1007/s11947-010-0502-6eng
dc.relation.referencesHagemann M, Kern R, Maurino VG, Hanson DT, Weber AP, Sage RF, & Bauwe H. Evolution of photorespiration from cyanobacteria to land plants, considering protein phylogenies and acquisition of carbon concentrating mechanisms. Journal of experi-mental botany, 67(10), 2963-2976, 2016. doi: 10.1093/jxb/erw063eng
dc.relation.referencesHai T, Ahlers H, Gorenflo V, & Steinbüchel A. Axenic cultivation of anoxygenic phototrophic bacteria, cyanobacteria, and microalgae in a new closed tubular glass photobioreactor. Applied Microbiology and Biotechnology, 53, 383-389, 2000. doi: 10.1007/s002530051630eng
dc.relation.referencesHalmi MIE, Shukor MS, Johari WLW, & Shukor MY. Evaluation of several mathematical models for fitting the growth of the algae Dunaliella tertiolecta. Asian Journal of Plant Biology, 2(1), 1-6. 2014.eng
dc.relation.referencesHan PP, Guo RJ, Shen SG, Yan RR, Wu YK, Yao SY, Wang HY, & Jia SR. Proteomic profiling of Nostoc flagelliforme reveals the common mechanism in promoting polysaccharide production by different light qualities. Biochemical Engineering Journal, 132, 68-78, 2018. doi: 10.1016/j.bej.2017.12.006eng
dc.relation.referencesHan PP, Shen SG, Wang HY, Sun Y, Dai YJ, & Jia SR. Comparative metabolomic analysis of the effects of light quality on polysaccharide production of cyanobacterium Nostoc flagelliforme. Algal Research, 9, 143-150, 2015. doi: 10.1016/j.algal.2015.02.019eng
dc.relation.referencesHan PP, Shen SG, Guo RJ, Zhao DX, Lin YJ, Jia S, Yan RR, & Wu YK. ROS is a factor regulating the increased polysaccharide production by light quality in the edible cyanobacterium Nostoc flagelliforme. Journal of Agricultural and Food Chemistry, 67 (8), 2235-2244, 2019. doi: 10.1021/acs.jafc.8b06176eng
dc.relation.referencesHan PP, Shen SG, Wang HY, Yao SY, Tan ZL, Zhong C, & Jia SR. Applying the strategy of light environment control to improve the biomass and polysaccharide production of Nostoc flagelliforme. Journal of Applied Phycology, 29 (496), 55-65, 2017a. doi: 10.1007/s10811-016-0963-8eng
dc.relation.referencesHan PP, Sun Y, Jia SR, Zhong C, & Tan ZLJC. Effects of light wavelengths on extracellular and capsular polysaccharide production by Nostoc flagelliforme. Carbohydrate polymers, 105, 145-151, 2014. doi: 10.1016/j.carbpol.2014.01.061eng
dc.relation.referencesHan PP, Yao SY, Guo RJ, Yan RR, Wu YK, Shen SG, & Jia SR. Influence of culture conditions on extracellular polysaccharide production and the activities of enzymes involved in the polysaccharide synthesis of Nostoc flagelliforme. RSC Advances, 7, 45075-45084, 2017b. doi: 10.1039/C7RA07982Feng
dc.relation.referencesHo SH, Chan MC, Liu CC, Chen CY, Lee WL, Lee DJ, & Chang JS. Enhancing lutein productivity of an indigenous microalga Scenedesmus obliquus FSP-3 using light-related strategies. Bioresource Technology, 152, 275-282, 2014. doi: 10.1016/j.biortech.2013.11.031eng
dc.relation.referencesHo MY, Soulier NT, Canniffe DP, Shen G, & Bryant DAJ. Light regulation of pigment and photosystem biosynthesis in cyanobacteria. 37, 24-33, 2017. doi: 10.1016/j.pbi.2017.03.006eng
dc.relation.referencesHuang L. Optimization of a new mathematical model for bacterial growth. Food Control, 32(1), 283-288, 2013. doi: 10.1016/j.foodcont.2012.11.019eng
dc.relation.referencesIbrahim S, Mansur A, Ahmad SA. Mathematical modelling of the growth of Caulobacter crescentus on caffeine. Journal of Environmental Microbiology and Toxicology, 6 (2): 13-17, 2018.eng
dc.relation.referencesInfante C, Angulo E, Zárate A, Florez JZ, Barrios F, & Zapata C. Propagación de la microalga Chlorella sp. en cultivo por lote: cinética del crecimiento celular. Avances en Ciencias e Ingeniería, 3(2), 2012.eng
dc.relation.referencesItoh KI, Nakamura K, Aoyama T, Kakimoto T, Murakami M, & Takido T. The influence of wavelength of light on cyanobacterial asymmetric reduction of ketone. Tetrahedron Letters, 55(2), 435-437, 2014. doi: 10.1016/j.tetlet.2013.11.049eng
dc.relation.referencesJohnson EM, Kumar K, & Das D. Physicochemical parameters optimization, and purification of phycobiliproteins from the isolated Nostoc sp. Bioresource technology, 166, 541-547, 2014. doi: 10.1016/j.biortech.2014.05.097eng
dc.relation.referencesKang Z, Kim BH, Ramanan R, Choi JE, Yang JW, Oh HM, & Kim HS. A cost analysis of microalgal biomass and biodiesel production in open raceways treating municipal wastewater and under optimum light wavelength. Journal of Microbiology and Biotechnology, 25(1), 109-118. 2015. doi: 10.4014/jmb.1409.09019eng
dc.relation.referencesKhajepour F, Hosseini SA, Nasrabadi RG, & Markou G. Effect of light intensity and photoperiod on growth and biochemical composition of a local isolate of Nostoc calcicola. Applied biochemistry and biotechnology, 176(8), 2279-2289, 2015. doi: 10.1007/s12010-015-1717-9eng
dc.relation.referencesKhanna P, Kaur A, & Goyal D. Algae-based metallic nanoparticles: Synthesis, characterization and applications. Journal of Microbiological Methods, 163, 105656, 2019. doi: 10.1016/j.mimet.2019.105656eng
dc.relation.referencesKim TH, Lee Y, Han SH, & Hwang SJ. The effects of wavelength and wavelength mixing ratios on microalgae growth and nitrogen, phosphorus removal using Scenedesmus sp. for wastewater treatment. Bioresource Technology, 130, 75-80, 2013. doi: 10.1016/j.biortech.2012.11.134eng
dc.relation.referencesKim YS, & Lee SH. Quantitative analysis of Spirulina platensis growth with CO2 mixed aeration. Environmental Engineering Research, 23(2), 216-222, 2018. doi: 10.4491/eer.2017.193eng
dc.relation.referencesKirilovsky D. Modulating energy arriving at photochemical reaction centers: orange carotenoid protein-related photoprotection and state transitions. Photosynthesis Research, 126: 3-17, 2015. doi: 10.1007/s11120-014-0031-7eng
dc.relation.referencesKokabi M, Yousefzadi M, Soltani M, & Arman M. Effects of different UV radiation on photoprotective pigments and antioxidant activity of the hot-spring cyanobacterium Leptolyngbya cf. fragilis. Phycological Research, 67 (3), 215-220, 2019. doi: 10.1111/pre.12374eng
dc.relation.referencesLacerda LMCF, Queiroz MI, Furlan LT, Lauro MJ, Modenesi K, Jacob-Lopes E, & Franco TT. Improving refinery wastewater for microalgal biomass production and CO2 biofixation: Predictive modeling and simulation. Journal of petroleum science and en-gineering, 78(3-4), 679-686, 2011. doi: 10.1016/j.petrol.2011.07.003eng
dc.relation.referencesLi H, Xie G, & Edmondson A. Evolution and limitations of primary mathematical models in predictive microbiology. British food journal, 109(8), 608-626, 2007. doi: 10.1108/00070700710772408eng
dc.relation.referencesLiu X, Sheng J, & Curtiss R. Fatty acid production in genetically modified cyanobacteria. Proceedings of the National Academy of Sciences, 2011. doi: 10.1073/pnas.1103014108eng
dc.relation.referencesLoaiza NR, Vera P, Aiello-Mazzarri C, & Morales EJA. Comparación del crecimiento y composición bioquímica de cuatro cepas de Nostoc y Anabaena (Cyanobacteria, Nostocales) en relación con el nitrato de sodio. Acta Biológica Colombiana, 21(2), 347-354, 2016. doi: 10.15446/abc.v21n2.48883eng
dc.relation.referencesLotfi H, Hejazi MA, Heshmati MK, Mohammadi SA, & Zarghami N. Optimizing expression of antiviral cyanovirin-N homology gene using response surface methodology and protein structure prediction. Cell Mol Biol (Noisy-le-grand), 63(9), 96-105, 2017. doi: 10.14715/cmb/2017.63.9.17eng
dc.relation.referencesLuimstra VM, Schuurmans JM, Verschoor AM et al. Blue light reduces photosynthetic effciency of cyanobacteria through an imbalance between photosystems I and II. Photosynthesis Research, 138, 177-189, 2018. doi: 10.1007/s11120-018-0561-5eng
dc.relation.referencesLuimstra VM, Schuurmans JM, de Carvalho CFM, Matthijs HCP, Hellingwerf KJ, Huisman J. Exploring the low photosynthetic effciency of cyanobacteria in blue light using a mutant lacking phycobilisomes. Photosynthesis Research, 1-11, 2019. doi: 10.1007/s11120-019-00630-zeng
dc.relation.referencesMa R, Lu F, Bi Y, & Hu Z. Effects of light intensity and quality on phycobiliprotein accumulation in the cyanobacterium Nostoc sphaeroides Kützing. Biotechnology Letters, 37, 1663-1669, 2015. doi: 10.1007/s10529-015-1831-3eng
dc.relation.referencesMakhalanyane TP, Valverde A, Velázquez D, Gunnigle E, Van Goethem MW, Quesada A, & Cowan DAJ. Ecology and biogeochemistry of cyanobacteria in soils, permafrost, aquatic and cryptic polar habitats. Biodiversity and Conservation, 24(4), 819-840, 2015. doi: 10.1007/s10531-015-0902-zeng
dc.relation.referencesMargarites AC, Volpato N, Araújo E, Cardoso LG, Bertolin TE, Colla LM, & Costa JA. Spirulina platensis is more effcient than Chlorella homosphaera in carbohydrate productivity. Environ Technol, 1-8, 2016. doi: 10.1080/09593330.2016.1254685eng
dc.relation.referencesMcBride RC, Smith VH, Carney LT, & Lane TW. Crop protection in open ponds. In: Slocombe SP, & Benemann JR (Eds.). Microalgal Production for Biomass and High-Value Products, 1st ed., CRC Press, 165-182, 2016.eng
dc.relation.referencesMerli GO, Perazzi JR. Modelos de crecimiento en microbiología predictiva (Ecología microbiana cuantitativa). Estimación de modelos y simulación mediante dinámica de sistemas, XXVII Simposio Internacional de Estadística 5th International Workshop on Applied Statistics, Medellín, Colombia, 2017.eng
dc.relation.referencesMohamed MS, Tan JS, Kadkhodaei S, Mohamad R, Mokhtar MN, & Ariff AB. Kinetics and modeling of microalga Tetraselmis sp. FTC 209 growth with respect to its adaptation toward different trophic conditions. Biochemical engineering journal, 88, 30-41, 2014. doi: 10.1016/j.bej.2014.04.002eng
dc.relation.referencesMorales E, Luna V, Navarro L, Santana V, Gordillo A, & Arévalo AJRE. Diversidad de microalgas y cianobacterias en muestras provenientes de diferentes provincias del Ecuador, destinadas a una colección de cultivos. Revista Ecuatoriana de Medicina y Ciencias Biológicas, 34(1-2), 129-149, 2017. doi: 10.26807/remcb.v34i1-2.240eng
dc.relation.referencesMotulsky HJ, & Ransnas LA. Fitting curves to data using nonlinear regression: a practical and nonmathematical review. The FASEB journal, 1(5), 365-374, 1987. doi: 10.1096/fasebj.1.5.3315805eng
dc.relation.referencesMytilinaios I, Bernigaud I, Belot V, & Lambert RJW. Microbial growth parameters obtained from the analysis of time to detection data using a novel rearrangement of the Baranyi-Roberts model. Journal of applied microbiology, 118(1), 161-174, 2014. doi: 10.1111/jam.12695eng
dc.relation.referencesNovoveska L, Franks DT, Wulfers TA, & Henley WJ. Stabilizing continuous mixed cultures of microalgae. Algal Research, 13(C), 126-133. 2016. doi: 10.1016/j.algal.2015.11.021eng
dc.relation.referencesNozzi NE, Oliver JW, & Atsumi S. Cyanobacteria as a platform for biofuel production. Frontiers in Bioengineering and Biotechnology, 1(7), 2013 doi: 10.3389/fbioe.2013.00007eng
dc.relation.referencesOldenhof H, Zachleder V, & Van Den Ende H. Blue-and redlight regulation of the cell cycle in Chlamydomonas reinhardtii (Chlorophyta). European Journal of Phycology, 41(3), 313-320, 2006. doi: 10.1080/09670260600699920eng
dc.relation.referencesOjit S, Indrama T, Gunapati O, Avijeet SO, Subhalaxmi AS, Silvia CH, Indira DW, Romi KH, Minerva SH, & Thadoi DA. The response of phycobiliproteins to light qualities in Anabaena circinalis. Journal of Applied Biology and Biotechnology, 3, 1-6, 2015. doi: 10.7324/JABB.2015.3301eng
dc.relation.referencesOoms MD, Graham PJ, Nguyen B, Sargent EH, & Sinton D. Light dilution via wave-length management for effcient high-density photobioreactors. Biotechnology and bioengineering, 114(6), 1160-1169, 2017. doi: 10.1002/bit.26261eng
dc.relation.referencesPagels F, Guedes AC, Amaro HM, Kijjoa A, & Vasconcelos V. Phycobiliproteins from cyanobacteria: Chemistry and biotechnological applications. Biotechnology Advances, 37 (3), 422-443, 2019. doi: 10.1016/j.biotechadv.2019.02.010eng
dc.relation.referencesPang K, Tang Q, Chen L, Wan B, Niu C, Yuan X, & Xiao S. NitrogenFixing heterocystous cyanobacteria in the Tonian period. Current Biology, 28(4), 616-622, 2018. doi: 10.1016/j.cub.2018.01.008eng
dc.relation.referencesPark H, & Lee CG. Theoretical Calculations on the Feasibility of Microalgal Biofuels: Utilization of Marine Resources Could Help Realizing the Potential of Microalgae. Biotechnol J, 11(11), 1461-1470, 2016. doi: 10.1002/biot.201600041eng
dc.relation.referencesPereyra DSV, & Ferrari SG. Extracellular Polymeric Substance (EPS) Production by Nostoc minutum under Different Laboratory Conditions. Advances in Microbiology, 6(05), 374, 2016. doi: 10.4236/aim.2016.65036eng
dc.relation.referencesPerni S, Andrew PW, Shama G. Estimating the maximum growth rate from microbial growth curves: definition is everything. Food microbiology, 22 (6): 491-495, 2005. doi: 10.1016/j.fm.2004.11.014eng
dc.relation.referencesPla ML, Oltra S, Esteban MD, Andreu S, Palop A. Comparison of primary models to predict microbial growth by the plate count and absorbance methods. BioMed Research International, 365025, 2015. doi: 10.1155/2015/365025eng
dc.relation.referencesRather AH, & Singh S. Preliminary evaluation of impact of monochromatic light on the biosynthesis of astaxanthin in green alga Haematococcus pluvialis. World News of Natural Sciences, 19, 45-50, 2018.eng
dc.relation.referencesRehman NNMA, & Dixit PP. Influence of light wavelengths, light intensity, temperature, and pH on biosynthesis of extracellular and intracellular pigment and biomass of Pseudomonas aeruginosa NR1. Journal of King Saud University Science. doi: 10.1016/j.jksus.2019.01.004eng
dc.relation.referencesRichards FJ. A flexible growth function for empirical use. Journal of experimental Botany, 10(2), 290-301, 1959. doi: 10.1093/jxb/10.2.290eng
dc.relation.referencesRichmond A. Handbook of microalgal culture: Biotechnology and applied phycology. Ames: Blackwell publishing. 2004.eng
dc.relation.referencesRivera-González MV, Gómez-Gómez L, & Cubillos-Hinojosa JG. Effect of humic acids on the growth and the biochemical composition of Arthrospira platensis. Revista Colombiana de Biotecnología, 19(1), 71-81, 2017. doi: 10.15446/rev.colomb.biote.v19n1.58316eng
dc.relation.referencesRyu BG, Kim J, Han JI, & Yang JW. Feasibility of using a microalgalbacterial consortium for treatment of toxic coke wastewater with concomitant production of microbial lipids. Bioresource Technology, 225, 58-66, 2017. doi: 10.1016/j.biortech.2016.11.029eng
dc.relation.referencesSanmartín P, Vázquez-Nion D, Arines J, Cabo-Domínguez L, & Prieto B. Controlling growth and colour of phototrophs by using simple and inexpensive coloured lighting: A preliminary study in the Light4Heritage project towards future strategies for outdoor illumination. International Biodeterioration and Biodegradation, 122, 107-115, 2017. doi: 10.1016/j.ibiod.2017.05.003eng
dc.relation.referencesSantiesteban-López N, López-Malo A. Descripción e importancia de algunos modelos predictivos utilizados como herramienta para la conservación de alimentos. Temas Selectos de Ingeniería de Alimentos, 2 (2): 14-26, 2008.spa
dc.relation.referencesSchuurman R, Matthijs J, & Hellingwerf K. Transition from exponential to linear photoautotrophic growth changes the physiology of Synechocystis sp. PCC 6803. Photosynthesis research, 132(1), 69-82. 2017. doi: 10.1007/s11120-016-0329-8eng
dc.relation.referencesShalaby EA, Atta MB, Sleem IA, Mohamed MA, Lightfoot DA, & El-Shemy HA. Cytotoxicity, antioxidant and antiviral potential of aqueous extract from Nostoc muscorum cultivated in various inexpensive media. Waste and Biomass Valorization, 10(5), 1419-1431, 2019. doi: 10.1007/s12649-017-0188-3eng
dc.relation.referencesShukla M, Tabassum R, Singh R, & Dhar DW. Influence of light intensity, temperature and CO2 concentration on growth and lipids in green algae and cyanobacteria. Indian Journal of experimental biology, 54, 482-487, 2016.eng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.proposalcyanobacteriaeng
dc.subject.proposallighteng
dc.subject.proposalmathematical modeleng
dc.subject.proposalmicrobial growth.eng
dc.subject.proposalcianobacteriasspa
dc.subject.proposalluzspa
dc.subject.proposalmodelo matemáticospa
dc.subject.proposalcrecimiento microbiano.spa
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

https://creativecommons.org/licenses/by/4.0/
Except where otherwise noted, this item's license is described as https://creativecommons.org/licenses/by/4.0/