Mostrar el registro sencillo del ítem

dc.contributor.authorGonzalez Osorio, Fabio
dc.contributor.authorPerdomo Charry, Oscar Julian
dc.contributor.authorToledo Cortes, Santiago
dc.contributor.authorDe La Pava, Melissa
dc.date.accessioned2021-05-12T19:00:05Z
dc.date.accessioned2021-10-01T17:16:54Z
dc.date.available2021-05-12
dc.date.available2021-10-01T17:16:54Z
dc.date.issued2020
dc.identifier.issn0302-9743
dc.identifier.urihttps://repositorio.escuelaing.edu.co/handle/001/1425
dc.description.abstractLa retinopatía diabética (RD) es una de las complicaciones microvasculares de la diabetes mellitus, que sigue siendo una de las principales causas de ceguera en todo el mundo. Los modelos computacionales basados ​​en redes neuronales convolucionales representan el estado del arte para la detección automática de RD utilizando imágenes de fondo de ojo. La mayor parte del trabajo actual aborda este problema como una tarea de clasificación binaria. Sin embargo, incluir la estimación de leyes y la cuantificación de la incertidumbre de las predicciones puede aumentar potencialmente la solidez del modelo. En este artículo, se presenta un método de proceso híbrido de aprendizaje profundo y gaussiano para el diagnóstico de RD y la cuantificación de la incertidumbre. Este método combina el poder de representación del aprendizaje profundo con la capacidad de generalizar a partir de pequeños conjuntos de datos de modelos de procesos gaussianos. Los resultados muestran que la cuantificación de la incertidumbre en las predicciones mejora la interpretabilidad del método como herramienta de apoyo al diagnósticoeng
dc.description.abstractDiabetic retinopathy (DR) is one of the microvascular complications of diabetes mellitus, which remains a leading cause of blindness worldwide. Computational models based on convolutional neural networks represent the state of the art for automatic detection of DR using fundus images. Most of the current work addresses this problem as a binary classification task. However, including law estimation and quantification of prediction uncertainty can potentially increase model robustness. In this paper, a hybrid deep learning and Gaussian process method for DR diagnosis and uncertainty quantification is presented. This method combines the representational power of deep learning with the ability to generalize from small data sets of Gaussian process models. The results show that the quantification of uncertainty in the predictions improves the interpretability of the method as a diagnostic support tool. Translated with www.DeepL.com/Translator (free version)eng
dc.format.extent10 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherSpringer Sciencespa
dc.sourcehttps://link.springer.com/chapter/10.1007/978-3-030-63419-3_21spa
dc.titleHybrid Deep Learning Gaussian Process for Diabetic Retinopathy Diagnosis and Uncertainty Quantificationspa
dc.typeArtículo de revistaspa
dc.description.notesEste trabajo fue parcialmente financiado por un premio de investigación de Google y por el proyecto Colciencias número 1101-807-63563.spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.contributor.researchgroupGiBiomespa
dc.identifier.doi10.1007/978-3-030-63419-3_21
dc.identifier.urlDOI:10.1007/978-3-030-63419-3_21
dc.relation.citationeditionLecture Notes in Computer Science (LNCS, volumen 12069)spa
dc.relation.citationissue206spa
dc.relation.citationstartpage215spa
dc.relation.citationvolume12069spa
dc.relation.indexedN/Aspa
dc.relation.ispartofjournalLecture Notes in Computer Sciencespa
dc.relation.referencesAbrámoff, M.D., et al.: Automated analysis of retinal images for detection of referable diabetic retinopathy. JAMA Ophthalmol. 131(3), 351–357 (2013).eng
dc.relation.referencesAmerican Academy of Ophthalmology: International clinical diabetic retinopathy disease severity scale detailed table. International Council of Ophthalmology (2002)eng
dc.relation.referencesBradshaw, J., Matthews, A.G.d.G., Ghahramani, Z.: Adversarial examples, uncertainty, and transfer testing robustness in Gaussian process hybrid deep networks, eprint, pp. 1-33 (2017).eng
dc.relation.referencesDecenciére, E., et al.: Feedback on a publicly distributed image database: the Messidor database. Image Anal. Stereol. 33(3), 231–234 (2014).eng
dc.relation.referencesDiabetic Retinopathy Detection of Kaggle: Eyepacs challenge.eng
dc.relation.referencesEthem, A.: Introduction to Machine Learning, 3rd edn. The MIT Press, Cambridge (2014)eng
dc.relation.referencesGargeya, R., Leng, T.: Automated identification of diabetic retinopathy using deep learning. Ophthalmology 124(7), 962–969 (2017)eng
dc.relation.referencesGulshan, V., et al.: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA J. Am. Med. Assoc. 316(22), 2402–2410 (2016)eng
dc.relation.referencesKaya, M., Bilge, H.: Deep metric learning: a survey. Symmetry 11, 1066 (2019).eng
dc.relation.referencesKrause, J., et al.: Grader variability and the importance of reference standards for evaluating machine learning models for diabetic retinopathy. Ophthalmology 125(8), 1264–1272 (2018).eng
dc.relation.referencesLeibig, C., Allken, V., Ayhan, M.S., Berens, P., Wahl, S.: Leveraging uncertainty information from deep neural networks for disease detection. Sci. Rep. 7(1), 1–14 (2017)eng
dc.relation.referencesLi, F., Liu, Z., Chen, H., Jiang, M., Zhang, X., Wu, Z.: Automatic detection of diabetic retinopathy in retinal fundus photographs based on deep learning algorithm. Transl. Vis. Sci. Technol. 8(6) (2019).eng
dc.relation.referencesLim, Z.W., Lee, M.L., Hsu, W., Wong, T.Y.: Building trust in deep learning system towards automated disease detection. In: The Thirty-First AAAI Conference on Innovative Applications of Artificial Intelligence, pp. 9516–9521 (2018)eng
dc.relation.referencesPerdomo, O., Gonzalez, F.: A systematic review of deep learning methods applied to ocular images. Ciencia e Ingenieria Neogranadina 30(1), 9–26 (2019)eng
dc.relation.referencesRaghu, M., Blumer, K., Sayres, R., Obermeyer, Z., Kleinberg, R., Mullainathan, S., Kleinberg, J.: Direct uncertainty prediction for medical second opinions. In: Proceedings of the 36th International Conference on Machine Learning, PMLR 97, Long Beach, California (2019)eng
dc.relation.referencesSzegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., Wojna, Z.: Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, December 2016, pp. 2818–2826 (2016).eng
dc.relation.referencesVoets, M., Møllersen, K., Bongo, L.A.: Reproduction study using public data of: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. PLoS ONE 14(6), 1–11 (2019)eng
dc.relation.referencesWells, J.A., et al.: aflibercept, bevacizumab, or ranibizumab for diabetic macular edema two-year results from a comparative effectiveness randomized clinical trial. Ophthalmology 123(6), 1351–1359 (2016)eng
dc.relation.referencesWilkinson, C.P.P., et al.: Proposed international clinical diabetic retinopathy and diabetic macular edema disease severity scales. Ophthalmology 110(9), 1677–1682 (2003)eng
dc.relation.referencesWilson, A., Nickisch, H.: Kernel interpolation for scalable structured gaussian processes (KISS-GP). In: Proceedings of the 32nd International Conference on Machine Learning. JMLR: W&CP, Lille, France (2015)eng
dc.relation.referencesXin, Q., Elliot, M., Miikkulainen, R.: Quantifying point-prediction uncertainty in neural networks via residual estimation with an I/O Kernel. In: ICLR 2020, Addis Ababa, Ethiopia, pp. 1–17 (2019)eng
dc.relation.referencesYau, J.W., et al.: Global prevalence and major risk factors of diabetic retinopathy. Diabetes Care 35(3), 556–564 (2012)eng
dc.relation.referencesZeng, X., Chen, H., Luo, Y., Ye, W.: Automated diabetic retinopathy detection based on binocular Siamese-like convolutional neural network. IEEE Access 7(c), 30744–30753 (2019)eng
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.subject.armarcRetinopatía diabética
dc.subject.armarcAprendizaje
dc.subject.armarcMétodo gaussianospa
dc.subject.armarcGaussian methodeng
dc.subject.proposalDeep Learningspa
dc.subject.proposalDiabetic Retinopathyspa
dc.subject.proposalGaussian Processspa
dc.subject.proposalUncertainty Quantificationspa
dc.subject.proposalAprendizaje profundospa
dc.subject.proposalRetinopatía diabéticaspa
dc.subject.proposalProceso gaussianospa
dc.subject.proposalCuantificación de la incertidumbrespa
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

  • AA. Gibiome [38]
    Clasificación: A - Convocatoria 2018

Mostrar el registro sencillo del ítem