Mostrar el registro sencillo del ítem

dc.contributor.authorLozada, Catalina
dc.contributor.authorThorel, Luc
dc.contributor.authorCaicedo, Bernardo
dc.date.accessioned2021-05-27T18:55:04Z
dc.date.accessioned2021-10-01T17:49:08Z
dc.date.available2021-05-27T18:55:04Z
dc.date.available2021-10-01T17:49:08Z
dc.date.issued2019
dc.identifier.issn1346-213X
dc.identifier.urihttps://repositorio.escuelaing.edu.co/handle/001/1505
dc.description.abstractWhen a clayey soil is exposed to desiccation, water evaporates from the surface. During dry periods, the soil may suffer from shrinking phenomena, the saturation degree decreases and formation of cracks begins. At the same time, an overconsolidated soil appears at the surface of the deposit. Some previous studies devoted to this problem have highlighted the impact of cracks on desiccated profiles. However, these analyses have been carried out without considering the suction effect. The present study examines the specific case of the cracked soils found in the area of Sabana de Bogotá in Colombia. In this research, some soil models are tested using the Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux's geotechnical centrifuge. In this paper, the experimental procedure is first described. Then, the experimental results for the bearing capacity are presented. Finally, an analysis of the bearing capacity is carried out by considering the matric suction effect. This analysis compares different theoretical methods used to calculate the bearing capacity of shallow foundations resting on unsaturated soils with the experimental results obtained using the centrifuge. The results of the analysis underline the necessity of considering suction for the computation of the bearing capacity of unsaturated soils.eng
dc.description.abstractCuando un suelo arcilloso se expone a la desecación, el agua se evapora de la superficie. Durante los períodos de sequía, el suelo puede sufrir fenómenos de contracción, el grado de saturación disminuye y comienza la formación de grietas. Al mismo tiempo, aparece un suelo sobre consolidado en la superficie del depósito. Algunos estudios anteriores dedicados a este problema han destacado el impacto de las grietas en los perfiles desecados. Sin embargo, estos análisis se han realizado sin considerar el efecto de succión. El presente estudio examina el caso específico de los suelos agrietados encontrados en la zona de la Sabana de Bogotá en Colombia. En esta investigación se ensayan algunos modelos de suelos utilizando la centrífuga geotécnica del Institut Français des Sciences et Technologies des Transports, de l'Aménagement et des Réseaux. En este artículo se describe en primer lugar el procedimiento experimental. A continuación, se presentan los resultados experimentales de la capacidad portante. Por último, se lleva a cabo un análisis de la capacidad portante considerando el efecto de la succión matricial. Este análisis compara diferentes métodos teóricos utilizados para calcular la capacidad portante de cimentaciones poco profundas apoyadas en suelos no saturados con los resultados experimentales obtenidos mediante la centrífuga. Los resultados del análisis subrayan la necesidad de considerar la succión para el cálculo de la capacidad portante de los suelos no saturados.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherICE Publishingspa
dc.sourcehttps://www.icevirtuallibrary.com/doi/10.1680/jphmg.17.00060spa
dc.titleBearing capacity of circular footings resting on unsaturated desiccated soilseng
dc.typeArtículo de revistaspa
dc.description.notesAssistant Professor, Civil Engineering Department, Escuela Colombiana de Ingeniería Julio Garavito, Bogotá, Colombia (corresponding author: catalina.lozada@escuelaing.edu.co) Senior Researcher, IFSTTAR, Department GERS, Geomaterials and modelling in geotechnics Laboratory, Route de Bouaye, CS4, Bouguenais Cedex, France Professor, Civil and Environmental Engineering Department, Universidad de Los Andes, Bogotá, Colombiaspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_16ecspa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.contributor.researchgroupGeotecniaspa
dc.identifier.doi10.1680/jphmg.17.00060
dc.identifier.urlhttps://doi.org/10.1680/jphmg.17.00060
dc.publisher.placeReino Unidospa
dc.relation.citationeditionVolume. 19 Issue 3, May, 2019, pp. 154-166.spa
dc.relation.citationendpage166spa
dc.relation.citationissue3spa
dc.relation.citationstartpage154spa
dc.relation.citationvolume19spa
dc.relation.indexedN/Aspa
dc.relation.ispartofjournalInternational Journal of Physical Modelling in Geotechnicsspa
dc.relation.referencesAmar S, Baguelin F, Canepa Y and Frank R (1994) Experimental study of the settlement of shallow foundations. In Proceedings of Vertical and Horizontal Deformations of Foundations and Embankments (Yeung AT and Félio GY (eds)). ASCE, New York, NY, USA, vol. 2, no. 40, pp. 1602–1610.spa
dc.relation.referencesBlight GE (1966) Strength characteristics of desiccated soils. Journal of Soil Mechanics and Foundations Division 92(6): 19–37.spa
dc.relation.referencesBozozuk M (1962) Soil Shrinkage Damages Shallow Foundations at Ottawa. Div. of Building Research NRCC Canada, Ottawa, ON, Canada, Research paper, 63.spa
dc.relation.referencesBuzzi O, Fityus S and Sloan SW (2010) Use of expanding polyurethane resin to remediate expansive soil foundations. Canadian Geotechnical Journal 47(6): 623–634.spa
dc.relation.referencesCasini F (2008) Effects of partial saturation on the behaviour of a compacted silt. In Proceedings of the 3rd International Workshop on Young Doctors in Geomechanics W(H)YDOC 08 (Pererira JM, De Gennaro V and Delage P (eds)). Écoles des Ponts ParisTech Champs-sur-Marne, Paris, France, pp. 69–72.spa
dc.relation.referencesCorte A and Higashi A (1960) Experimental Research on Desiccation Cracks in Soil. U.S. Army now, Ice and Permafrost Research Establishment, Hanover, NH, USA, Research report 66.spa
dc.relation.referencesCosta YD, Cintra JC and Zornberg JG (2003) Influence of matric suction on the results of plate load tests performed on a lateritic soil deposit. Geotechnical Testing Journal 26(2): 219–226.spa
dc.relation.referencesDelage P (2002) Experimental unsaturated soil mechanics. In Proceedings of the 3rd International Conference on Unsaturated Soils, Recife, Brazil (Jucá JFT, de Campos TMP and Marinho FAM (eds)). CRC Press, London, UK, pp. 11–32.spa
dc.relation.referencesDelage P, Romero E and Tarantino A (2008) Recent developments in the techniques of controlling and measuring suction in unsaturated soils. In Proceedings of the 1st European Conference on Unsaturated Soils, Durham, UK (Toll DG, Augarde CE, Gallipoli D and Wheeler SJ (eds)). CRC Press, Leiden, the Netherlands, pp. 33–52.spa
dc.relation.referencesDerkx F, Merliot E, Garnier J and Cottineau LM (1998) On-board remote-controlled robot. In Proceedings of the International Conference Centrifuge 98, Tokyo, Japan (Kimura T, Kusakabe O and Takemura J (eds)). Balkema, Rotterdam, the Netherlands, pp. 97–102.spa
dc.relation.referencesFaruqi M, Pena E and Balogh J (2014) Geotechnical structures: investigation of drilled shafts in highly expansive soils. Engineering Structures and Technologies 6(2): 69–76.spa
dc.relation.referencesGan JKM, Fredlund DG and Rahardjo H (1988) Determination of the shear strength parameters of an unsaturated soil using the direct shear test. Canadian Geotechnical Journal 25(3): 500–510.spa
dc.relation.referencesGarnier J (2001) Modèles physiques en géotechnique. I-Evolution des techniques expérimentales et des domaines d'application. Revue Française de géotechnique 97: 3–29 (in French).spa
dc.relation.referencesGaudicheau P, Thorel L, Néel A, Audrain et al. (2014) Improvement of the IFSTTAR robot control system. In Proceedings of the 8th International Conference on Physical Modelling in Geotechnics, Perth, Australia (Gaudin C and White D (eds)). CRC Press, London, UK, pp. 221–226.spa
dc.relation.referencesGaudin C, Thorel L, Rault G, Garnier J and Chenaf N (2008) Un aperçu de l'utilisation du t-bar miniature en centrifugeuse. In Proceedings of JNGG 2008: Journees nationales de geotechnique et de geologie de l'ingenieur, Nantes, France (Dano C, Hicher P, Garnier J, Riou Y, Thorel L and Soubra A (eds)). LCPC, Paris, France, pp. 18–20 (in French).spa
dc.relation.referencesGourvenec SM and Mana DSK (2011) Undrained vertical bearing capacity factors for shallow foundations. Géotechnique Letters 1(4): 101–108, https://doi.org/10.1680/geolett.11.00026.spa
dc.relation.referencesKodikara JK, Barbour SL, Fredlund DG et al. (2000) Desiccation cracking of soil layers. In Proceedings of the Asian Conference on Unsaturated Soils, UNSAT-Asia 2000, Singapore (Rahardjo H, Toll DG and Leong EC (eds)). Balkema, Rotterdam, the Netherlands, pp. 693–698.spa
dc.relation.referencesLozada C (2016) Study of the Soil Atmosphere Interaction and Bearing Capacity of a Soil under Desiccation. PhD thesis, Universidad de Los Andes, Colombia and Ecole Centrale de Nantes, Bogotá, France.spa
dc.relation.referencesLozada C, Caicedo B and Thorel L (2015) Effects of cracks and desiccation on the bearing capacity of soil deposits. Géotechnique Letters 5(3): 112–117, https://doi.org/10.1680/jgele.15.00021.spa
dc.relation.referencesMcMahon BT, Haigh SK and Bolton MD (2013) Cavity expansion model for the bearing capacity and settlement of circular shallow foundations on clay. Géotechnique 63(9): 746–752, https://doi.org/10.1680/geot.12.P.061.spa
dc.relation.referencesMiller GA and Muraleetharan KK (1998) In situ testing in unsaturated soil. In Proceedings of the Second International Conference on Unsaturated Soils, Beijing, China. International Academic Publishing House, Beijing, China, vol. 1, pp. 416–421.spa
dc.relation.referencesNahlawi H and Kodikara JK (2006) Laboratory experiments on desiccation cracking of thin soil layers. Geotechnical and Geological Engineering 24(6): 1641–1664.spa
dc.relation.referencesOh WT and Vanapalli SK (2012) Interpretation of the bearing capacity of unsaturated fine-grained soil using the modified effective and the modified total stress approaches. International Journal of Geomechanics 13(6): 769–778.spa
dc.relation.referencesRobinson R and Allam M (2008) Preconsolidation pressure of desiccated soils. International Journal of Geotechnical Engineering 2(3): 285–290.spa
dc.relation.referencesSarmiento C and León D (2016) Caracterización geomecánica estática y dinámica a partir de exploración directa, indirecta y ensayos de laboratorio en el sitio de experimentación geotécnica en la Escuela Colombiana de Ingeniería (SEGECI). Master thesis, Escuela Colombiana de Ingeniería Julio Garavito, Bogotá, Colombia (in Spanish).spa
dc.relation.referencesTang CS, Cui YJ, Tang AM and Shi B (2010) Experiment evidence on the temperature dependence of desiccation cracking behavior of clayey soils. Engineering Geology 114(3): 261–266.spa
dc.relation.referencesThorel L, Ferber V, Caicedo B and Khokhar IM (2011) Physical modelling of wetting-induced collapse in embankment base. Géotechnique 61(5): 409–420, https://doi.org/10.1680/geot.10.P.029.spa
dc.relation.referencesThusyanthan NI, Take WA, Madabhushi SPG and Bolton MD (2007) Crack initiation in clay observed in beam bending. Géotechnique 57(7): 581–594, https://doi.org/10.1680/geot.2007.57.7.581.spa
dc.relation.referencesVanapalli SK and Mohamed FM (2007) Bearing capacity of model footings in unsaturated soils. In Experimental Unsaturated Soil Mechanics (Schanz T (ed.)). Springer, Berlin Heidelberg, New York, pp. 483–493.spa
dc.relation.referencesVanapalli SK, Fredlund DG, Pufahl DE and Clifton AW (1996) Model for the prediction of shear strength with respect to soil suction. Canadian Geotechnical Journal 33(3): 379–392.spa
dc.relation.referencesVesga L, Caicedo B and Mesa L (2003) Deep cracking in Sabana de Bogotá clay. In Proceedings of the Twelfth Panamerican Conference on Soil Mechanics and Geotechnical Engineering, Cambridge, MA, USA (Culligan PJ, Einstein HH and Whittle AJ (eds)). Verlag Glückauf GMBH, Essen, Germany, pp. 737–742.spa
dc.relation.referencesXu Y (2004) Bearing capacity of unsaturated expansive soils. Geotechnical and Geological Engineering 22(4): 611–625.spa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.subject.armarcSuelosspa
dc.subject.armarcSoilseng
dc.subject.armarcArcillaspa
dc.subject.armarcClayeng
dc.subject.armarcSuelos - Clasificaciónspa
dc.subject.armarcSoils - Classificationeng
dc.subject.armarcTextura de suelosspa
dc.subject.armarcSoil textureeng
dc.subject.proposalEnvironmenteng
dc.subject.proposalFoundationseng
dc.subject.proposalGeotechnical engineeringeng
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem