Mostrar el registro sencillo del ítem

dc.contributor.authorLozada, Catalina
dc.contributor.authorCaicedo, Bernardo
dc.contributor.authorThorel, Luc
dc.date.accessioned2021-05-27T19:10:22Z
dc.date.accessioned2021-10-01T17:49:09Z
dc.date.available2021-05-27T19:10:22Z
dc.date.available2021-10-01T17:49:09Z
dc.date.issued2019
dc.identifier.issn1346-213X
dc.identifier.urihttps://repositorio.escuelaing.edu.co/handle/001/1507
dc.description.abstractA new climatic chamber at the Universidad de Los Andes in Bogotá, Colombia has been designed and built to simulate atmosphere. It has been instrumented to measure various environmental variables, including relative humidity (RH), wind velocity, radiation and temperature. The climatic chamber has been calibrated so that it properly simulates each environmental variable as well as the heat-transfer mechanisms that affect desiccation in soil layers. First, a potential evaporation test was performed in a container filled with water. The weight of the water evaporated was measured, and the interaction with the artificial atmosphere was studied. Then, an actual evaporation test was performed on a soil layer, and the relations among environmental variables and soil properties such as soil temperature, water content and suction were determined. The principal results show the existence of a gradient of RH at the soil–atmosphere interface. Also, a comparison between potential and actual evaporation indicates that suction is the main soil property that affects the actual evaporation rate.eng
dc.description.abstractSe ha diseñado y construido una nueva cámara climática en la Universidad de los Andes de Bogotá (Colombia) para simular la atmósfera. Se ha instrumentado para medir diversas variables ambientales, como la humedad relativa (HR), la velocidad del viento, la radiación y la temperatura. La cámara climática ha sido calibrada para que simule adecuadamente cada variable ambiental, así como los mecanismos de transferencia de calor que afectan a la desecación en las capas del suelo. En primer lugar, se realizó una prueba de evaporación potencial en un recipiente lleno de agua. Se midió el peso del agua evaporada y se estudió la interacción con la atmósfera artificial. A continuación, se realizó una prueba de evaporación real en una capa de suelo y se determinaron las relaciones entre las variables ambientales y las propiedades del suelo, como la temperatura, el contenido de agua y la succión. Los principales resultados muestran la existencia de un gradiente de HR en la interfaz suelo-atmósfera. Asimismo, la comparación entre la evaporación potencial y la real indica que la succión es la principal propiedad del suelo que afecta a la tasa de evaporación real.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherICE Publishingspa
dc.sourcehttps://www.icevirtuallibrary.com/doi/10.1680/jphmg.17.00073spa
dc.titleA new climatic chamber for studying soil–atmosphere interaction in physical modelseng
dc.typeArtículo de revistaspa
dc.description.notesProfessor, Civil Engineering Department, Escuela Colombiana de Ingeniería Julio Garavito, Bogotá, Colombia (corresponding author: catalina.lozada@escuelaing.edu.co) Professor, Civil and Environmental Engineering Department, Universidad de Los Andes, Bogotá, Colombia Senior Researcher, IFSTTAR, Department GERS, Geomaterials and Modelling in Geotechnics Laboratory, Route de Bouaye, Bouguenais Cedex, Francespa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_16ecspa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.contributor.researchgroupGeotecniaspa
dc.identifier.doi10.1680/jphmg.17.00073
dc.identifier.urlhttps://doi.org/10.1680/jphmg.17.00073
dc.publisher.placeReino Unidospa
dc.relation.citationeditionVolume 19 Issue 6, November, 2019, pp. 286-304.spa
dc.relation.citationendpage304spa
dc.relation.citationissue6spa
dc.relation.citationstartpage286spa
dc.relation.citationvolume19spa
dc.relation.indexedN/Aspa
dc.relation.ispartofjournalInternational Journal of Physical Modelling in Geotechnicsspa
dc.relation.referencesAskarinejad A, Laue J, Zweidler A et al. (2012) Physical modelling of rainfall induced landslides under controlled climatic conditions. In Proceedings of the 2nd Eurofuge Conference on Physical Modelling in Geotechnics, Delft, the Netherlands, Delft University of Technology and Deltares, Delft, the Netherlands, pp. 1–10.spa
dc.relation.referencesBlight G (2009) Solar heating of the soil and evaporation from a soil surface. Géotechnique 59(4): 355–363, https://doi.org/10.1680/geot.2009.59.4.355.spa
dc.relation.referencesCui YJ, Ta AN, Hemmati S, Tang AM and Gatmiri B (2013) Experimental and numerical investigation of soil-atmosphere interaction. Engineering Geology 165: 20–28.spa
dc.relation.referencesDalton J (1802) Experimental essays on the constitution of mixed gases; on the force of steam or vapor from water and other liquids in different temperatures, both in a Torricellian vacuum and in air; on evaporation and on the expansion of gases by heat. In Proceedings of Manchester Literary and Philosophica Society, Cadell & Davies, London, UK, pp. 535–602.spa
dc.relation.referencesFredlund DG and Xing A (1994) Equations for the soil-water characteristic curve. Canadian Geotechnical Journal 31(3): 521–532.spa
dc.relation.referencesGitirana G, Fredlund MD and Fredlund DG (2006) Numerical modelling of soil-atmosphere interaction for unsaturated surfaces. In Proceedings of the 4th International Conference on Unsaturated Soils (Miller GA, Zapata CE, Houston SL and Fredlund DG (eds)). ASCE, Reston, VA, USA, GSP 147, pp. 658–669.spa
dc.relation.referencesHudacsek P and Bransby MF (2008) Centrifuge modelling of embankments subject to seasonal moisture changes. In Proceedings of the International Conference Advances in Transportation Geotechnics (Ellis E, Yu HS, McDowell G, Dawson AR and Thom N (eds)). CRC Press, Nottingham, UK, pp. 487–494.spa
dc.relation.referencesKreith F (1962) Principles of Heat Transfer, 2nd edn. I. T. Company Scranton, PA, USA.spa
dc.relation.referencesMichot A, Smith DS, Degot S and Gault C (2008) Thermal conductivity and specific heat of kaolinite: evolution with thermal treatment. Journal of the European Ceramic Society 28(14): 2639–2644.spa
dc.relation.referencesMiller CJ, Mi H and Yesiller N (1998) Experimental analysis of desiccation crack propagation in clay liners. JAWRA Journal of the American Water Resources Association 34(3): 677–686.spa
dc.relation.referencesMurray FW (1967) On the computation of saturation vapor pressure. Journal of Applied Meteorology 6(1): 203–204.spa
dc.relation.referencesPenman HL (1948) Natural evaporation from open water, bare soil and grass. Proceedings of the Royal Society A 193(1032): 120–145.spa
dc.relation.referencesSong WK, Cui YJ, Tang AM and Ding WQ (2013) Development of a large-scale environmental chamber for investigating soil water evaporation. Geotechnical Testing Journal 36(6): 847–857.spa
dc.relation.referencesTake WA and Bolton MD (2002) An atmospheric chamber for the investigation of the effect of seasonal moisture changes on clay slopes. In Proceedings of the International Conference of Physical Modelling in Geotechnics, Rotterdam, the Netherlands (Guo P, Phillips R and Popescu R (eds)). CRC Press, St John's, NL, Canada, pp. 765–770.spa
dc.relation.referencesTrabelsi H, Jamei M, Zenzri H and Olivella S (2012) Crack patterns in clayey soils: experiments and modeling. International Journal for Numerical and Analytical Methods in Geomechanics 36(11): 1410–1433.spa
dc.relation.referencesTristancho J, Caicedo B, Thorel L and Obregón N (2012) Climatic chamber with centrifuge to simulate different weather conditions. Geotechnical Testing Journal 35(1): 159–171.spa
dc.relation.referencesVan Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal 44(5): 892–898.spa
dc.relation.referencesWilson GW, Fredlund DG and Barbour SL (1994) Coupled soil-atmosphere modelling for soil evaporation. Canadian Geotechnical Journal 31(2): 151–161.spa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.subject.armarcAtmósferaspa
dc.subject.armarcAtmosphereeng
dc.subject.armarcSuelos - Absorción y adsorciónspa
dc.subject.armarcSoil absorption and adsorptioneng
dc.subject.armarcPermeabilidad de suelosspa
dc.subject.armarcSoil permeabilityeng
dc.subject.proposalEnvironmenteng
dc.subject.proposalModels (physical)eng
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem