Mostrar el registro sencillo del ítem

dc.contributor.authorTorres Castellanos, Nancy
dc.contributor.authorTorres Agredo, Janneth
dc.contributor.authorMejía de Gutierrez, Ruby
dc.date.accessioned2021-05-31T14:41:25Z
dc.date.accessioned2021-10-01T17:46:32Z
dc.date.available2021-05-31T14:41:25Z
dc.date.available2021-10-01T17:46:32Z
dc.date.issued2016
dc.identifier.issn0889-325X
dc.identifier.urihttps://repositorio.escuelaing.edu.co/handle/001/1529
dc.description.abstractIn this paper, the mechanical properties of concrete with an added residue of the petrochemical industry (at levels of 10, 20, 30%), called catalytic cracking catalyst residue (FCC), are evaluated. The mechanical properties evaluated include compressive strength, modulus of elasticity, flexural strength, and ultrasonic pulse velocity. Two reference materials, portland cement concrete without addition and added with 20% of metakaolin (MK), were used. These tests were performed up to 360 days of curing age. Based on the results obtained, correlations were established between the different properties evaluated. The best mechanical performance was obtained with 10% FCC as a cement replacement.eng
dc.description.abstractEn este trabajo se evalúan las propiedades mecánicas del hormigón con un residuo añadido de la industria petroquímica (en niveles del 10, 20 y 30%), denominado residuo de catalizador de craqueo catalítico (FCC). Las propiedades mecánicas evaluadas incluyen la resistencia a la compresión, el módulo de elasticidad, la resistencia a la flexión y la velocidad de los impulsos ultrasónicos. Se utilizaron dos materiales de referencia, hormigón de cemento portland sin adición y adicionado con un 20% de metacaolín (MK). Estos ensayos se realizaron hasta los 360 días de edad de curado. A partir de los resultados obtenidos, se establecieron correlaciones entre las diferentes propiedades evaluadas. Las mejores prestaciones mecánicas se obtuvieron con un 10% de FCC como sustituto del cemento.spa
dc.format.extent8 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherACI American Concrete Institutespa
dc.sourcehttps://www.concrete.org/publications/internationalconcreteabstractsportal.aspx?m=details&id=51689375spa
dc.titleMechanical Performance of Concrete with Waste from Oil Industryeng
dc.typeArtículo de revistaspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_16ecspa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.contributor.researchgroupEstructuras y Materialesspa
dc.publisher.placeUnited State.spa
dc.relation.citationeditionACI Materials Journal, V. 113, No. 5, September-October 2016.spa
dc.relation.citationendpage659spa
dc.relation.citationissue5spa
dc.relation.citationstartpage653spa
dc.relation.citationvolume113spa
dc.relation.indexedN/Aspa
dc.relation.ispartofjournalACI Materials Journalspa
dc.relation.referencesGartner, E., “Industrially Interesting Approaches to Low CO2 Cements,” Cement and Concrete Research, V. 34, No. 9, 2004, pp. 1489- 1498. doi: 10.1016/j.cemconres.2004.01.021spa
dc.relation.referencesHendriks, C. A.; Worrell, E.; de Jager, D.; Blok, K.; and Riemer, P., “Emission Reduction of Greenhouse Gases from the Cement Industry,” Proceedings of the 4th International Conference on Greenhouse Gas Control Technologies, IEA GHG R&D Programme, Interlaken, Austria, 1998.spa
dc.relation.referencesMarafi, M., and Stanislaus, A., “Spent Catalyst Waste Management: A Review: Part I—Developments in Hydroprocessing Catalyst Waste Reduction and Use,” Resources, Conservation and Recycling, V. 52, No. 6, 2008, pp. 859-873. doi: 10.1016/j.resconrec.2008.02.004spa
dc.relation.referencesPacewska, B.; Wilińska, I.; Bukowska, M.; and Nocuń-Wczelik, W., “Effect of Waste Aluminosilicate Material on Cement Hydration and Properties of Cement Mortars,” Cement and Concrete Research, V. 32, No. 11, 2002, pp. 1823-1830. doi: 10.1016/S0008-8846(02)00873-6spa
dc.relation.referencesPacewska, B.; Wilińska, I.; Bukowska, M.; Blonkowski, G.; and Nocuń-Wczelik, W., “An Attempt to Improve the Pozzolanic Activity of Waste Aluminosilicate Catalyst,” Thermal Analysis and Calorimetry, V. 77, No. 1, 2004, pp. 133-142. doi: 10.1023/B:JTAN.0000033196.30760.afspa
dc.relation.referencesAntiohos, S. K.; Chouliara, E.; and Tsimas, S., “Re-Use of Spent Catalyst from Oil-Cracking Refineries as Supplementary Cementing Material,” Journal China Particuology, V. 4, No. 2, 2006, pp. 73-76. doi: 10.1016/ S1672-2515(07)60238-3spa
dc.relation.referencesPayá, J.; Monzó, J.; and Borrachero, M., “Fluid Catalytic Cracking Catalyst Residue (FC3R): An Excellent Mineral By-Product for Improving Early Strength Development of Cement Mixtures,” Cement and Concrete Research, V. 29, No. 11, 1999, pp. 1773-1779. doi: 10.1016/ S0008-8846(99)00164-7spa
dc.relation.referencesPayá, J.; Monzó, J.; and Borrachero, M., “Physical, Chemical and Mechanical Properties of Fluid Catalytic Cracking Catalyst Residue (FC3R) Blended Cements,” Cement and Concrete Research, V. 31, No. 1, 2001, pp. 57-61. doi: 10.1016/S0008-8846(00)00432-4spa
dc.relation.referencesPayá, J.; Monzó, J.; Borrachero, M. V.; and Velázquez, S., “Evaluation of the Pozzolanic Activity of Fluid Catalytic Cracking Catalyst Residue (FC3R). Thermogravimetric Analysis Studies on FC3R-Portland Cement Pastes,” Cement and Concrete Research, V. 33, No. 4, 2003, pp. 603-609. doi: 10.1016/S0008-8846(02)01026-8spa
dc.relation.referencesTrochez, J.; Torres, J.; and Mejía de Gutiérrez, R., “Estudio de la Hidratación de Pastas de Cemento Adicionadas con Catalizador de Craqueo Catalítico Usado (FCC) de una Refinería Colombiana,” Revista Facultad de Ingeniería Universidad de Antioquia, V. 55, 2010, pp. 26-34spa
dc.relation.referencesIzquierdo, S.; Díaz, J.; Mejía, R.; and Torres, J., “Cemento Adicionado con un Residuo del Proceso de Craqueo Catalítico (FCC): Hidratación y Microestructura,” Revista Ingeniería de Construcción RIC, V. 28, No. 2, 2013, pp. 141-154. doi: 10.4067/S0718-50732013000200003spa
dc.relation.referencesSu, N.; Fang, H.; Chen, Z.; and Liu, F., “Reuse of Waste Catalysts from Petrochemical Industries for Cement Substitution,” Cement and Concrete Research, V. 30, No. 11, 2000, pp. 1773-1783. doi: 10.1016/ S0008-8846(00)00401-4spa
dc.relation.referencesSu, N.; Chen, Z.; and Fang, H., “Reuse of Spent Catalyst as Fine Aggregate in Cement Mortar,” Cement and Concrete Composites, V. 23, No. 1, 2001, pp. 111-118. doi: 10.1016/S0958-9465(00)00074-3spa
dc.relation.referencesBorrachero, M. V.; Monzó, J.; Payá, J.; Peris-Mora, E.; Vunda, C.; Velázquez, S.; and Soriano, L., “El Catalizador Gastado de Craqueo Catalítico Adicionado al Cemento Portland: Las Primeras 48 Horas de Curado y la Evolución de la Resistencia Mecánica,” VIII Congreso Nacional de Propiedades Mecánicas de Sólidos, Gandia, Spain, 2002, pp. 579-589.spa
dc.relation.referencesPacewska, B.; Bukowska, M.; Wilińska, I.; and Swat, M., “Modification of Properties of Concrete by a New Pozzolan. A Waste Catalyst from the Catalytic Process in a Fluidized Bed,” Cement and Concrete Research, V. 32, No. 1, 2002, pp. 145-152. doi: 10.1016/S0008-8846(01)00646-9spa
dc.relation.referencesNeves, R.; Vicente, C.; Castela, A.; and Montemor, M. F., “Durability Performance of Concrete Incorporating Spent Fluid Cracking Catalyst,” Cement and Concrete Composites, V. 55, 2015, pp. 308-314. doi: 10.1016/j. cemconcomp.2014.09.018spa
dc.relation.referencesTorres Castellanos, N.; Izquierdo García, S.; Torres Agredo, J.; and Mejía de Gutiérrez, R., “Resistance of Blended Concrete Containing an Industrial Petrochemical Residue to Chloride Ion Penetration and Carbonation,” Ingeniería e Investigación, V. 34, No. 1, 2014, pp. 11-16. doi: 10.15446/ing.investig.v34n1.38730spa
dc.relation.referencesTorres, N.; Torres, J.; and Mejía de Gutiérrez, R., “Performance under Sulfate Attack of Concrete Additioned with Fluid Catalytic Cracking Catalyst Residue (FCC) and Metakaolin (MK),” Ingeniería e Investigación, V. 33, No. 1, 2013, pp. 18-22.spa
dc.relation.referencesASTM C618-12a, “Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete,” ASTM International, West Conshohocken, PA, 2012, 12 pp.spa
dc.relation.referencesTorres, J.; Mejía de Gutiérrez, R.; Castelló., R.; and Vizcayno, C., “Procesos de Hidratación de Pastas OPC Adicionadas con Caolín Tratado Térmicamente,” Revista Facultad de Ingeniería Universidad de Antioquia, V. 43, 2008, pp. 77-85.spa
dc.relation.referencesNSR-10, “Colombian Earthquake Resistant Building Code,” Ministerio de Ambiente, Vivienda y Desarrollo Territorial, Bogotá, Colombia, 2010, 130 pp. (in Spanish)spa
dc.relation.referencesASTM C469-94, “Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compression,” ASTM International, West Conshohocken, PA, 1994, 4 ppspa
dc.relation.referencesASTM C39/C39M-99, “Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens,” ASTM International, West Conshohocken, PA, 1999, 5 pp.spa
dc.relation.referencesASTM C78/C78M-02, “Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading),”ASTM International, West Conshohocken, PA, 2002, 4 pp.spa
dc.relation.referencesASTM C597-09, “Standard Test Method for Pulse Velocity Through Concrete,”ASTM International, West Conshohocken, PA, 2009, 4 ppspa
dc.relation.referencesSoriano, M. L., “Nuevas Aportaciones en el Desarrollo de Materiales Cementantes con Residuo de Catalizador de Craqueo Catalítico (FCC),” PhD thesis, Universidad Politécnica de Valencia, Valencia, Spain, 2008.spa
dc.relation.referencesNassif, H.; Najm, H.; and Suksawang, N., “Effect of Pozzolanic Materials and Curing Methods on the Elastic Modulus of HPC,” Cement and Concrete Composites, V. 27, No. 6, 2005, pp. 661-670. doi: 10.1016/j. cemconcomp.2004.12.005spa
dc.relation.referencesQian, X., and Li, Z., “The Relationships between Stress and Strain for High-Performance Concrete with Metakaolin,” Cement and Concrete Research, V. 31, No. 11, 2001, pp. 1607-1611. doi: 10.1016/ S0008-8846(01)00612-3spa
dc.relation.referencesMehta, K., and Monteiro, P., Concrete, Microstructure, Properties, and Materials, McGraw-Hill, New York, 2006, 647 ppspa
dc.relation.referencesPopovics, S.; Rose, J. L.; and Popovics, J. S., “The Behavior of Ultrasonic Pulses in Concrete,” Cement and Concrete Research, V. 20, No. 2, 1990, pp. 259-270. doi: 10.1016/0008-8846(90)90079-Dspa
dc.relation.referencesPopovics, S., Strength and Related Properties of Concrete: A Quantitative Approach, John Wiley & Sons, Inc., New York, 1998.spa
dc.relation.referencesYang, H.; Lin, Y.; Hsiao, C.; and Liu, J.-Y., “Evaluating Residual Compressive Strength of Concrete at Elevated Temperatures Using Ultrasonic Pulse Velocity,” Fire Safety Journal, V. 44, No. 1, 2009, pp. 121-130. doi: 10.1016/j.firesaf.2008.05.003spa
dc.relation.referencesShariq, M.; Prasad, J.; and Masood, A., “Studies in Ultrasonic Pulse Velocity of Concrete Containing GGBFS,” Construction and Building Materials, V. 40, 2013, pp. 944-950. doi: 10.1016/j.conbuildmat.2012.11.070spa
dc.relation.referencesParande, A. K.; Babu, B. R.; Karthik, M. A.; Kumaar, K. K. D.; and Palaniswamy, N., “Study on Strength and Corrosion Performance for Steel Embedded in Metakaolin Blended Concrete/Mortar,” Construction and Building Materials, V. 22, No. 3, 2008, pp. 127-134. doi: 10.1016/j. conbuildmat.2006.10.003spa
dc.relation.referencesTrtnik, G.; Kavcic, F.; and Turk, G., “Prediction of Concrete Strength Using Ultrasonic Pulse Velocity and Artificial Neural Networks,” Ultrasonics, V. 49, No. 1, 2009, pp. 53-60. doi: 10.1016/j.ultras.2008.05.001spa
dc.relation.referencesMalhotra, V., “Nondestructive Methods for Testing Concrete,” Department of Energy, Mines and Resources, Ottawa, ON, Canada, 1985, pp. 7-110spa
dc.relation.referencesMadandoust, R., and Mousavi, S. Y., “Fresh and Hardened Properties of Self-Compacting Concrete Containing Metakaolin,” Construction and Building Materials, V. 35, 2012, pp. 752-760. doi: 10.1016/j. conbuildmat.2012.04.109spa
dc.relation.referencesAbdel-Jawad, Y. A., and Afaneh, M., “Factors Affecting the Relationship between Ultrasonic Pulse Velocity and Concrete Compressive Strength,” Indian Concrete Journal, V. 71, No. 7, 1997, pp. 373-376.spa
dc.relation.referencesHamid, R.; Yusof, K. M.; and Zain, M. F. M., “A Combined Ultrasound Method Applied to High Performance Concrete with Silica Fume,” Construction and Building Materials, V. 24, No. 1, 2010, pp. 94-98. doi: 10.1016/j.conbuildmat.2009.08.012spa
dc.relation.referencesBreysse, D., “Nondestructive Evaluation of Concrete Strength: An Historical Review and a New Perspective by Combining NDT Methods,” Construction and Building Materials, V. 33, 2012, pp. 139-163. doi: 10.1016/j.conbuildmat.2011.12.103spa
dc.relation.referencesKou, S.-C.; Poon, C.-S.; and Agrela, F., “Comparisons of Natural and Recycled Aggregate Concretes Prepared with the Addition of Different Mineral Admixtures,” Cement and Concrete Composites, V. 33, No. 8, 2011, pp. 788-795. doi: 10.1016/j.cemconcomp.2011.05.009spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.subject.armarcHormigónspa
dc.subject.armarcConcreteeng
dc.subject.armarcCraqueo catalíticospa
dc.subject.armarcCatalytic crackingeng
dc.subject.armarcAptitudes mecánicas - Pruebasspa
dc.subject.armarcMechanical ability - Testingeng
dc.subject.armarcResistencia de materialesspa
dc.subject.armarcStrength of materialseng
dc.subject.proposalCatalyst spenteng
dc.subject.proposalMechanical strengthseng
dc.subject.proposalMetakaolineng
dc.subject.proposalUltrasonic pulse velocityeng
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem