Mostrar el registro sencillo del ítem

dc.contributor.authorMebarkia, Ahmed
dc.contributor.authorJerez, Sandra
dc.contributor.authorProdhomme, Gaetan
dc.contributor.authorReimeringer, Mathieu
dc.date.accessioned2021-05-31T15:47:35Z
dc.date.accessioned2021-10-01T17:46:33Z
dc.date.available2021-05-31T15:47:35Z
dc.date.available2021-10-01T17:46:33Z
dc.date.issued2016
dc.identifier.issn1947-5705
dc.identifier.urihttps://repositorio.escuelaing.edu.co/handle/001/1530
dc.description.abstractThe paper presents an integrated framework which deals with natural hazards (tsunamis), physical vulnerability modelling, risk of failure for industrial structures (metal structures) and structural resilience provided by plastic adaptation. Simplified models are proposed to describe the run-up and wave height attenuation in case of tsunamis. The results are calibrated in the case of important tsunamis having taken place in Asian region. The mechanical vulnerability of cylindrical metal tanks erected near the shoreline is also investigated. The fragility curves are then developed in order to describe the multimodal failure: overturning, rupture of anchorages and sliding, buoyancy, excessive bending effects or buckling. Corresponding fragility curves are developed under various conditions: height of tsunami waves, filling ratios and service conditions of the tanks, friction tank/ground as well as dimensions effects. Probabilistic description of the natural hazard and the fragility curves are presented. Sensitivity analysis is also performed in order to investigate the effect of various governing parameters. Furthermore, resilience concepts and metrics are proposed. Theoretical description of the damages and post-disaster recovery functions are discussed: plastic adaptation as well as elastic and plastic attractors.eng
dc.description.abstractEl artículo presenta un marco integrado que aborda los peligros naturales (tsunamis), la modelización de la vulnerabilidad física, el riesgo de fallo de las estructuras industriales (estructuras metálicas) y la resistencia estructural que proporciona la adaptación plástica. Se proponen modelos simplificados para describir el run-up y la atenuación de la altura de las olas en caso de tsunami. Los resultados se calibran para los principales tsunamis de la región asiática. También se investiga la vulnerabilidad mecánica de tanques cilíndricos de metal erigidos cerca de la costa. A continuación se desarrollan curvas de fragilidad para describir el fallo multimodal: vuelco, rotura de anclajes y deslizamiento, flotación, efectos de flexión excesiva o pandeo. Se desarrollan las correspondientes curvas de fragilidad para diversas condiciones: alturas de las olas del tsunami, ratios de llenado del tanque y condiciones de servicio, fricción tanque/suelo, así como efectos dimensionales. Se presenta una descripción probabilística del peligro natural y de las curvas de fragilidad. También se realiza un análisis de sensibilidad para investigar el efecto de varios parámetros de gobierno. Además, se proponen conceptos y métricas de resiliencia. Se discute la descripción teórica de las funciones de daño y recuperación tras el desastre: adaptación plástica y atractores elásticos y plásticos.spa
dc.format.extent14 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherTaylor and Francis Ltd.spa
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/spa
dc.sourcehttps://www.tandfonline.com/doi/full/10.1080/19475705.2016.1181458spa
dc.titleNatural hazards, vulnerability and structural resilience: tsunamis and industrial tankseng
dc.typeArtículo de revistaspa
dc.description.notesa Laboratoire Modelisation et Simulation Multi Echelle, University Paris-Est, Marne-La-Vallee, France; b Grupo de Investigación en Estructuras y Materiales, Escuela Colombiana de Ingeniería, Bogotá, Colombia; c Unit Securite des Structures, Institut National de l’Environnement Industriel et des Risques (INERIS), Verneuil-en-Halatte, Francespa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.contributor.researchgroupEstructuras y Materialesspa
dc.identifier.doi10.1080/19475705.2016.1181458
dc.identifier.doihttps://doi.org/10.1080/19475705.2016.1181458
dc.publisher.placeReino Unido.spa
dc.relation.citationeditionNatural Hazards and Risk, 7:sup1, 5-17.spa
dc.relation.citationendpage17spa
dc.relation.citationissue1spa
dc.relation.citationstartpage5spa
dc.relation.citationvolume7spa
dc.relation.indexedN/Aspa
dc.relation.ispartofjournalGeomatics, Natural Hazards and Riskspa
dc.relation.referencesAbe K. 1993. Estimate of tsunami heights from earthquake magnitudes. Proceedings of the IUGG/IOC International Tsunami Symposium TSUNAMI'93; Wakayama, Japan.spa
dc.relation.referencesAbe K. 1995. Modeling of the runup heights of the Hokkaido-Nansei-Oki tsunami of 12 July 1993. Pure Appl Geophys. 144:113–124.spa
dc.relation.referencesAldunce P, Beilin R, Howden M, Handmer J. 2015. Resilience for disaster risk management in a changing climate: practitioners’ frames and practices. Global Environ Change. 30:1–11.spa
dc.relation.referencesAngeon V, Bates S. 2015. Reviewing composite vulnerability and resilience indexes: a sustainable approach and application. World Dev. 72:140–162.spa
dc.relation.referencesBarker K, Ramirez-Marquez JE, Rocco CM. 2012. Resilience-based network component important measures. Reliab Eng Syst Safety. 117:89–97.spa
dc.relation.referencesBond A, Morrison-Saunders A, Gunn JAE, Pope J, Retief F. 2015. Managing uncertainty, ambiguity and ignorance in impact assessment by embedding evolutionary resilience, participatory modeling and adaptive management. J Environ Manag. 151:97–104.spa
dc.relation.referencesBurwell D, Tolkova E, Chawla A. 2007. Diffusion and dispersion characterization of a numerical tsunami model. Ocean Model. 19:10–30.spa
dc.relation.referencesCardoso SR, Barbosa-Póvoa AP, Relvas S, Novais AQ. 2015. Resilience metrics in the assessment of complex supply-chains performance operating under demand uncertainty. Omega. 56:53–73.spa
dc.relation.referencesChen L, Rotter M. 2012. Buckling of anchored cylindrical shells of uniform thickness under wind load. Eng Struct. 41:199–208.spa
dc.relation.referencesCheung KF, Wei Y, Yamazaki Y, Yim SCS. 2011. Modeling of 500-year tsunamis for probabilitistic design of coastal infrastructures in the Pacific Northwest. Coastal Eng. 58:970–985.spa
dc.relation.referencesChopra SS, Khanna V. 2015. Interconnectedness and interdependencies of critical infrastructures in the US economy: implications for resilience. Physica A. 436:865–877.spa
dc.relation.referencesConstantin A. 2009. On the relevance of soliton theory to tsunami modelling. Wave Motion. 46:420–426.spa
dc.relation.referencesDemetracopoulos AC, Hadjitheodorou C, Antonopoulos JA. 1994. Statistical and numerical analysis of tsunami wave heights in confined waters. Ocean Eng. 21:629–643.spa
dc.relation.referencesDijkstra HA, Viebahn JP. 2015. Sensitivity and resilience of the climate system: a conditional nonlinear optimization approach. Commun Nonlinear Sci Numer Simulat. 22:13–22.spa
dc.relation.referencesDinh LTT, Pasman H, Gao X, Mannan MS. 2012. Resilience engineering of industrial processes: principles and contributing factors. J Loss Prev Proc Ind. 25:233–241.spa
dc.relation.referencesFlouri ET, Kalligeris N, Alexandrakis G, Kampanis NA, Synolakis CE. 2013. Application of a finite difference computational model to the simulation of earthquake generated tsunamis. Appl Num Math. 67:111–125.spa
dc.relation.referencesFrancis R, Bekera B. 2014. A metric and framework for resilience analysis of engineered and infrastructure systems. Reliab Eng Sys Safety. 121:90–103.spa
dc.relation.referencesGEBCO. 2012. General bathymetric chart of the oceans. Available 15/06/2012, from www.gebco.net.spa
dc.relation.referencesGodoy LA. 2007. Performance of storage tanks in oil facilities damaged by Hurricanes Katrina and Rita. J Perform Constructed Facil. 21:441–449.spa
dc.relation.referencesGoto K, Chagué-Goff C, Fujino S, Goff J, Jaffe B, Nishimura Y, Richmond B, Sugawara D, Szczucinski W, Tappin DR, et al. 2011. New insights of tsunami hazard from the 2011 Tohoku-oki event. Mar Geol. 290:46–50.spa
dc.relation.referencesGoto Y. 2008. Tsunami damage to oil storage tanks. In The 14 World Conference on Earthquake Engineering; Beijing, China.spa
dc.relation.referencesHaugen KB, Lovholt F, Harbitz CB. 2005. Fundamental mechanisms for tsunami generation by submarine mass flows in idealised geometries. Mar Pet. Geol. 22:209–217.spa
dc.relation.referencesHeidarzadeh M, Pirooz MD, Zaker NH. 2009. Modeling of the near-field effects of the worst-case tsunami in the Makran subduction zone. Ocean Eng. 36:368–376.spa
dc.relation.referencesHelal MA, Mehanna MS. 2008. Tsunamis from nature to physics. Chaos Solitons Fractals. 36:787–796.spa
dc.relation.referencesHollnagel E, Nemeth CP, Dekker S. 2008. Resilience engineering perspectives: remaining sensitive to the possibility of failure. Vol.1, Ashgate Studies in Resilience Engineering, Ashgate Publishing Limited. Burlington: Ashgate.spa
dc.relation.referencesHollnagel E, Pariès J, Woods DD, Wreathall J. 2011. Resilience engineering in practice: a guidebook. Ashgate Studies in Resilience Engineering, Ashgate Publishing Limited. Burlington: Ashgate.spa
dc.relation.referencesJohnston MC, Porteous T, Crilly MA, Burton CD, Elliott A, Iversen L, McArdle K, Murray A, Phillips LH, Black C. 2008. Physical disease and resilient outcomes: a systematic review of resilience definitions and study methods. Psychosomatics. 56:168–180.spa
dc.relation.referencesKelman I, Gaillard JC, Mercer J. 2015. Climate change's role in disaster risk reduction's future: beyond vulnerability and resilience. Int J Disaster Risk Sci. 6:21–27.spa
dc.relation.referencesKhalili S, Harre M, Morley P. 2015. A temporal framework of social resilience indicators of communities to flood, case studies: Wagga wagga and Kempsey, NSW, Australia. Int J Dis Risk Reduc. 13:48–254.spa
dc.relation.referencesKoshimura S, Namegaya Y, Yanagisawa H. 2009. Tsunami fragility - a new measure to identify Tsunami damage. J Dis Res. 4:479–490.spa
dc.relation.referencesLabaka L, Hernantes J, Sarriegi JM. 2015. Resilience framework for critical infrastructures: An empirical study in a nuclear plant. Reliab Eng Syst Safety. 141:92–105.spa
dc.relation.referencesLeone F, Lavigne F, Paris R, Denain J-C, Vinet F. 2011. A spatial analysis of the December 26th, 2004 tsunami-induced damages: lessons learned for a better risk assessment integrating buildings vulnerability. Appl Geogr. 31:363–375.spa
dc.relation.referencesLindbom H, Tehler H, Eriksson K, Aven T. 2015. The capability concept – on how to define and describe capability in relation to risk, vulnerability and resilience. Reliab Eng Syst Safety. 135:45–54.spa
dc.relation.referencesLiu PL-F, Wang X, Salisbury AJ. 2009. Tsunami hazard and early warning system in South China Sea. J Asian Earth Sci. 36:2–12.spa
dc.relation.referencesLovholt F, Glimsdal S, Harbitz CB, Zamora N, Nadim F, Peduzzi P, Dao H, Smebye H. 2012. Tsunami hazard and exposure on the global scale. Earth Sci Rev. 110:58–73.spa
dc.relation.referencesLukkunaprasit P, Thanasisathit N, Yeh H. 2009. Experimental verification of FEMA P646 Tsunami loading. J Disaster Res. 4:410–418.spa
dc.relation.referencesLundberg J, Johansson BJE. 2015. Systemic resilience model. Reliab. Eng Sys. Saf. 141:22–32.spa
dc.relation.referencesMadsen PA. 2010. On the evolution and run-up of tsunamis. J Hydrodynamics. 22:1–6. doi:10.1016/S1001-6058(09)60160-8.spa
dc.relation.referencesManyena SB. 2014. Disaster resilience: a question of ‘multiple faces’ and ‘multiple spaces’? Int J Disaster Risk Reduct. 8:1–9.spa
dc.relation.referencesMatthews EC, Sattler M, Friedland CJ. 2014. A critical analysis of hazard resilience measures within sustainability assessment frameworks. Env Impact Assess Rev. 49:59–69.spa
dc.relation.referencesMebarki A. 2009. A comparative study of different PGA attenuation and error models: case of 1999 Chi-Chi earthquake. Tectonophysics. 466:300–306.spa
dc.relation.referencesMebarki A, Barroca B. 2015. Resilience and vulnerability analysis for restoration after tsunamis and floods: the case of dwellings and industrial plants. In Santiago-Fandiño V et al. editors. Post-Tsunami hazard reconstruction and restoration. Advances in Natural and Technological Hazards Research, Springer (ISBN: 978-3-319-10201-6).spa
dc.relation.referencesMebarki A, Jerez S, Matasic I, Prodhomme G, Reimeringer M, Pensée V, Vu QA, Willot A. 2014a. Domino effects and industrial risks: integrated probabilistic framework – case of tsunamis effects. In Kontar YA et al., editors. Tsunami events and lessons learned : environnemental and societal significance. Advances in Natural and Technological Hazards Research 35, doi:10.1007/978-94-007-7269-4_15, Springer.spa
dc.relation.referencesMebarki A, Willot A, Jerez S, Reimeringer M, Prodhomme G. 2014b. Vulnerability and resilience under effects of tsunamis: case of industrial plants. Procedia Eng. 84:116–121.spa
dc.relation.referencesMiller-Hooks E, Zhang X, Faturechi R. 2012. Measuring and maximizing resilience of freight transportation networks. Comput Oper Res. 39:1633–1643.spa
dc.relation.referencesMugume SN, Gomez DE, Fu G, Farmani R, Butler D. 2015. A global analysis approach for investigating structural resilience in urban drainage systems. Water Res. 81:15–26.spa
dc.relation.referencesNaito C, Cox D, Yu Q, Brooker H. 2013. Fuel Storage Container Performance during the 2011 Tohoku Japan Tsunami. J Perform Constructed Facilities. 27:373–380.spa
dc.relation.referencesNandasena NAK, Paris R, Tanaka N. 2011. Reassessment of hydrodynamic equations: minimum flow velocity to initiate boulder transport by high energy events (storms, tsunamis). Mar. Geol. 281:70–84.spa
dc.relation.referencesNistor I, Palermo D, Nouri Y, Murty T, Saatcioglu M. 2010. Tsunami-Induced forces on structures. In: Kim YC, editor. Handbook of coastal and ocean engineering. Singapore: World Scientific Publishing Co. Pte. Ltd.; p. 261–286.spa
dc.relation.referencesNorio O, Ye T, Kajitani Y, Shi P, Tatano H. 2011. The 2011 Eastern Japan great earthquake disaster: overview and comments. Int J Disaster Risk Sci. 2:34–42.spa
dc.relation.referencesOken BS, Chamine I, Wakeland W. 2015. A systems approach to stress, stressors and resilience in humans. Behav Brain Rese. 282:144–154spa
dc.relation.referencesOuyang M, Wang Z. 2015. Resilience assessment of interdependent infrastructure systems: with a focus on joint restoration modeling and analysis. Reliab Eng Syst Safety. 141:74–82.spa
dc.relation.referencesPant R, Barker K, Ramirez-Marquez JE, Rocco CM. 2014. Stochastic measures of resilience and their application to container terminals. Comput Ind Eng. 70:183–194.spa
dc.relation.referencesPophet N, Kaewbanjak N, Asavanant J, Ioualalen M. 2011. High grid resolution and parallelized tsunami simulation with fully nonlinear Boussinesq equations. Comput Fluids. 40:258–268.spa
dc.relation.referencesRighi AW, Saurin TA, Wachs P. 2015. A systematic literature review of resilience engineering: research areas and a research agenda proposal. Reliab Eng Syst Saf. 141:142–152.spa
dc.relation.referencesRoege PE, Collier ZA, Mancillas J, McDonagh JA, Linkov I. 2014. Metrics for energy resilience. Energy Policy. 72:249–256.spa
dc.relation.referencesSahebjamnia N, Torabi SA, Mansouri SA. 2015. Integrated business continuity and disaster recovery planning: towards organizational resilience. Eur J Oper Res. 242:261–273.spa
dc.relation.referencesSakakiyama T, Matsuura S, Matsuyama M. 2009. Tsunami force acting on oil tanks and buckling analysis for Tsunami pressure. J Disaster Res. 4:427–435.spa
dc.relation.referencesShafieezadeh A, Burden LI. 2014. Scenario-based resilience assessment framework for critical infrastructure systems: case study for seismic resilience of seaports. Reliab Eng Syst Saf. 132:207–219.spa
dc.relation.referencesShirali GHA, Motamedzade M, Mohammadfam I, Ebrahimpour V, Moghimbeigi A. 2012. Challenges in building resilience engineering (RE) and adaptive capacity: a field study in chemical plant. Process Saf. Environ Prot. 90:83–90.spa
dc.relation.referencesStewart DE, Yuen T. 2011. A systematic review of resilience in the physically Ill. Psychosomatics. 52:199–209.spa
dc.relation.referencesWijetunge JJ. 2006. Tsunami on 26 December 2004: spatial distribution of tsunami height and the extent of inundation in Sri Lanka. SciTsunami Hazards. 24:225–240.spa
dc.relation.referencesZhang DH, Yip TL, Ng C-O. 2009. Predicting tsunami arrivals: estimates and policy implications. Mar Policy. 33:643–650.spa
dc.relation.referencesZhao BB, Duan WY, Webster WC. 2011. Tsunami simulation with Green-Naghdi theory. Ocean Eng. 3:389–296.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.armarcResistencia de materialesspa
dc.subject.armarcStrength of materialseng
dc.subject.armarcTsunamisspa
dc.subject.armarcTsunamiseng
dc.subject.armarcIngeniería de estructurasspa
dc.subject.armarcStructural engineeringeng
dc.subject.proposalHazardseng
dc.subject.proposalTsunamiseng
dc.subject.proposalResilienceeng
dc.subject.proposalStructureseng
dc.subject.proposalIndustrial tankeng
dc.subject.proposalSfragility curveseng
dc.subject.proposalVulnerabilityeng
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

https://creativecommons.org/licenses/by/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como https://creativecommons.org/licenses/by/4.0/