Mostrar el registro sencillo del ítem

dc.contributor.authorPulido-Suárez, P.A.
dc.contributor.authorUñate-González, K.S.
dc.contributor.authorTirado-González, J.G.
dc.contributor.authorEsguerra-Arce, A.
dc.contributor.authorEsguerra-Arce, J.
dc.date.accessioned2021-06-22T20:26:13Z
dc.date.accessioned2021-10-01T17:37:38Z
dc.date.available2020
dc.date.available2021-06-22T20:26:13Z
dc.date.available2021-10-01T17:37:38Z
dc.date.issued2020
dc.identifier.issn2238-7854
dc.identifier.urihttps://repositorio.escuelaing.edu.co/handle/001/1595
dc.description.abstractAlthough long/continuous metallic chips are easily recycled by melting, this is not the casefor discontinuous milling chips. The present study aimed to reduce waste generation andto facilitate the use of this byproduct in order to obtain a metallic-oxide composite. Chipswere collected after machining Al-Si-Zn-Mg alloy parts, and powders were obtained throughgrinding processes. Grinding was performed at 45, 69, and 94 h, with grinding bodies/chipsvolume ratios of 6:1, 8:1, 10:1 and 12:1. The resulting powders were characterized by scanningelectron microscopy, laser granulometry, and X-ray diffraction. After grinding, the parti-cles were compacted and sintered, and hardness was evaluated. It was found that metallicpowder is formed through plastic deformation, hardening, fracture, and dynamic recrystal-lization. It was possible to obtain samples with lower apparent density and higher hardnessby powder metallurgy from Al-Si-Zn-Mg alloy chips than from the bulk. Powder was obtainedafter grinding, and samples were obtained by compacting and sintering. The higher hard-ness value was attributed to the presence of Al2O3formed in the particles during grinding,which acts as a second reinforcing phase in the sintered samples, and as a retardant ofintermetallic phase growingspa
dc.description.abstractAunque las virutas metálicas largas / continuas se reciclan fácilmente por fusión, este no es el caso de las virutas de molienda discontinuas. El presente estudio tuvo como objetivo reducir la generación de residuos y facilitar el uso de este subproducto para obtener un compuesto de óxido metálico. Las virutas se recogieron después de mecanizar piezas de aleación de Al-Si-Zn-Mg y los polvos se obtuvieron mediante procesos de molienda. La trituración se realizó a las 45, 69 y 94 h, con relaciones de volumen de cuerpos de trituración / virutas de 6: 1, 8: 1, 10: 1 y 12: 1. Los polvos resultantes se caracterizaron mediante microscopía electrónica de barrido, granulometría láser y difracción de rayos X. Después de la molienda, las partículas se compactaron y sinterizaron y se evaluó la dureza. Se encontró que el polvo metálico se forma mediante deformación plástica, endurecimiento, fractura y recristalización dinámica. Fue posible obtener muestras con menor densidad aparente y mayor dureza mediante pulvimetalurgia a partir de virutas de aleación de Al-Si-Zn-Mg que a granel. El polvo se obtuvo después de la trituración y las muestras se obtuvieron por compactación y sinterización. El mayor valor de dureza se atribuyó a la presencia de Al2O3 formado en las partículas durante la molienda, que actúa como una segunda fase de refuerzo en las muestras sinterizadas y como retardador del crecimiento de la fase intermetálica.spa
dc.format.extent9 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherElsevierspa
dc.rightsThis is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).spa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.sourcehttps://www.sciencedirect.com/science/article/pii/S2238785420316525?via%3Dihubspa
dc.titleThe evolution of the microstructure and properties of ageable Al-Si-Zn-Mg alloy during the recycling of milling chips through powder metallurgyspa
dc.typeArtículo de revistaspa
dc.description.notesReceived 7 May 2020 Accepted 11 August 2020 Available online 28 August 2020spa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.contributor.researchgroupCentro de Investigaciones en Manufactura y Servicios - CIMSERspa
dc.identifier.arkhttps://www.sciencedirect.com/science/article/pii/S2238785420316525?via%3Dihub
dc.identifier.doidoi.org/10.1016/j.jmrt.2020.08.045
dc.publisher.placeEstados Unidosspa
dc.relation.citationeditionVolumen 9, Número 5, Septiembre - Octubre 2020spa
dc.relation.citationendpage11777spa
dc.relation.citationissue5spa
dc.relation.citationstartpage11769spa
dc.relation.citationvolume9spa
dc.relation.indexedN/Aspa
dc.relation.ispartofjournalJournal of Materials Research and Technologyspa
dc.relation.referencesHirsch J. Recent development in aluminum for automotiveapplications. Trans Nonferrous Met Soc China2014;24(7):1995–2002,http://dx.doi.org/10.1016/S1003-6326(14)63305-7spa
dc.relation.referencesZhang X, Chen Y, Hu J. Recent advances in the developmentof aerospace materials. Prog Aerosp Sci 2018;97:22–34,http://dx.doi.org/10.1016/j.paerosci.2018.01.001spa
dc.relation.referencesAbdel-Gawad SA, Osman WM, Fekry AM. Characterizationand corrosion behavior of anodized aluminum alloys formilitary industries applications in artificial seawater. J SurfInterfaces Mater 2019;14:314–23 http://dx.doi.org/10.1016/j.surfin.2018.08.001spa
dc.relation.referencesKirchener G. Der Aluminiumschrottmarkt im Wandel (inGerman). Aluminium 1994;70:340–3spa
dc.relation.referencesGronostajski JZ, Kaczmar JW, Marciniak H, Matuszak A.Direct recycling of aluminum chips into extruded products. JMater Process Tech 1997;64:149–56,http://dx.doi.org/10.1016/S0924-0136(96)02563-0spa
dc.relation.referencesGronostajski J, Marcinik H, Matuszak A. New methods ofaluminum and aluminum-alloy chips recycling. J MaterProcess Tech 2000;106:34–9,http://dx.doi.org/10.1016/S0924-0136(00)00634-8spa
dc.relation.referencesIrfan Ab Kadir M, Sukri Mustapa M, Abdul Latif N, SahibMahdi A. Microstructural analysis and mechanicalproperties of direct recycling aluminium chips AA6061/Alpowder fabricated by uniaxial cold compaction technique.Procedia Eng 2017;184:687–94,http://dx.doi.org/10.1016/j.proeng.2017.04.141.spa
dc.relation.referencesSeong-Hyeon H, Dong-Won L, Byoung-Kee K. Manufacturingof aluminum flake powder from foil scrap by dry ball millingprocess. J Mater Process Tech 2000;100:105–9,http://dx.doi.org/10.1016/S0924-0136(99)00469-0spa
dc.relation.referencesFuziana YF, Warikh ARM, Lajis MA, Azam MA, MuhammadNS. Recycling aluminium (Al 6061) chip through powdermetallurgy route. Mater Res Innov 2014;18(S6):354–8,http://dx.doi.org/10.1179/1432891714Z.000000000981spa
dc.relation.referencesRojas-Díaz LM, Verano-Jiménez LE, Mu ̃noz-García E,Esguerra-Arce J, Esguerra-Arce A. Production and characterization of aluminum powder derived frommechanical saw chips and its processing through powdermetallurgy. Powder Technol 2020;360:301–11,http://dx.doi.org/10.1016/j.powtec.2019.10.028spa
dc.relation.referencesAfshari Elham, Ghambari Mohammad. Characterization ofpre-alloyed tin bronze powder prepared by recyclingmachining chips using jet milling. Mater Des 2016;103:201–8,http://dx.doi.org/10.1016/j.matdes.2016.04.064spa
dc.relation.referencesZhou Haiping, Hu Lianxi, Sun Yu , Zhang Hongbin, DuanCongwen, Yu Huan. Synthesis of nanocrystalline AZ31magnesium alloy with titanium addition by mechanicalmilling. Mater Charact 2016;113:108–16spa
dc.relation.referencesSusila P, Sturm D, Heilmaier M, Murty BS, SubramanyaSarma V. Microstructural studies on nanocrystalline oxidedispersion strengthened austenitic(Fe–18Cr–8Ni–2W–0.25Y2O3) alloy synthesized by high energyball milling and vacuum hot pressing. J Mater Sci2010;45(17):4858–67,http://dx.doi.org/10.1007/s10853-010-4264-3spa
dc.relation.referencesWilliamson GK, Hall WH. X-ray line broadening from filedaluminium and wolfram. Acta Metall Mater 1953;1:22–31,http://dx.doi.org/10.1016/0001-6160(53)90006-6spa
dc.relation.referencesBaghdadi A, Rajabi A, Mohamad Selamat NF, Sajuri Z, ZaidiOmar M. Effect of post-weld heat treatment on mechanicalbehaviour and dislocation density of friction stir weldedAl6061. Mat Sci Eng A 2019;754:728–34,http://dx.doi.org/10.1016/j.msea.2019.03.017spa
dc.relation.referencesTsai DS, Chin TS, Hsu SE, Hung MP. A simple method for thedetermination of lattice parameters from powder X-raydiffraction data. Mater T JIM 1989;30:474–9,http://dx.doi.org/10.2320/matertrans1989.30.474spa
dc.relation.referencesBacca M, Hayhurst DR, McMeeking RM. Continuous dynamicrecrystallization during severe plastic deformation. MechMater 2015;90:148–56,http://dx.doi.org/10.1016/j.mechmat.2015.05.008spa
dc.relation.referencesSchmidt R, Mastin Scholze H, Stolle A. Temperatureprogression in a mixer ball mill. Int J Ind Chem 2016;7:181–6,http://dx.doi.org/10.1007/s40090-016-0078-8.spa
dc.relation.referencesKapila A, Lee T, Vivek A, Cooper R, Hetrick E, Daehn G. Spotimpact welding of an age-hardening aluminum alloy:process, structure and properties. J Manuf Processes2019;37:42–5, http://dx.doi.org/10.1016/j.jmapro.2018.11.006spa
dc.relation.referencesZhang JX, Sun HY, Li J, Liu WC. Effect of precipitation state onrecrystallization texture of continuous cast AA 2037aluminum alloy. Mater Sci Eng A 2019;754:491–501,http://dx.doi.org/10.1016/j.msea.2019.03.10spa
dc.relation.referencesZhang T, Shi-hong L, Yun-xin W, Gong H. Optimization ofdeformation parameters of dynamic recrystallization for7055 aluminum alloy by cellular automaton. TransNonferrous Met Soc China 2017;27:1327–37,http://dx.doi.org/10.1016/S1003-6326(17)60154-7.spa
dc.relation.referencesJimbo G, Zhao QQ, Yokoyana T, Taniyana Y. The grindinglimit and the negative grinding phenomenon. In: Proc. IIndWorld Congress of Particle Technology. Society of PowderTechnology. 1990. p. 305–12.spa
dc.relation.referencesBoldyrev VV, Pavlov SV, Goldberg EL. Interrelation betweenfine grinding and mechanical activation. Int J Miner Process1996;44–45:181–5spa
dc.relation.referencesKumar S, Mathieux F, Onwubolu G, Chandra V. A novelpowder metallurgy-based method for the recycling ofaluminum adapted to a small island developing state in thePacific. Int J Environ Conscious Des Manuf 2007;13(3,4):1–22.ECM Pressspa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.subject.armarcMicroestructuraspa
dc.subject.armarcMicrostructureeng
dc.subject.armarcMetalurgia de polvosspa
dc.subject.armarcPowder metallurgyeng
dc.subject.armarcMetales pulverizadosspa
dc.subject.proposalCompositespa
dc.subject.proposalDiscontinuous chipsspa
dc.subject.proposalPowder metallurgyspa
dc.subject.proposalAluminum alloysspa
dc.subject.proposalDynamic recrystallizationspa
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
Excepto si se señala otra cosa, la licencia del ítem se describe como This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).