Mostrar el registro sencillo del ítem

dc.contributor.authorMebarki, Ahmed
dc.contributor.authorJerez Barbosa, Sandra Rocio
dc.contributor.authorMatasic, Igor
dc.contributor.authorProdhomme, Gaëtan
dc.contributor.authorReimeringer, Mathieu
dc.contributor.authorPensee, Vincent
dc.contributor.authorAnh Vu, Quang
dc.contributor.authorWillot, Adrien
dc.date.accessioned2021-11-08T15:49:44Z
dc.date.available2021-11-08T15:49:44Z
dc.date.issued2013
dc.identifier.isbn9789400772687
dc.identifier.urihttps://repositorio.escuelaing.edu.co/handle/001/1819
dc.description.abstractThis paper presents an integrated probabilistic framework that deals with the industrial accidents and domino effects that may occur in an industrial plant. The particular case of tsunamis is detailed in the present paper: simplified models for the inundations depths and run-ups as well as their mechanical effects on industrial tanks. The initial accident may be caused by severe service conditions in any of the tanks either under or at atmospheric pressure, or triggered by a natural hazard such as earthquake, tsunami or extreme floods for instance. This initial event generates, in general, a set of structural fragments, a fire ball, a blast wave as well as critical losses of containment (liquid and gas release and loss). The surrounding facilities may suffer serious damages and may also be a new source of accident and explosion generating afterwards a new sequence of structural fragments, fire ball, blast wave and confinement loss. The structural fragments, the blast wave form and the features of the fire ball can be described following database and feedback collected from past accidents. The surrounding tanks might be under or at atmospheric pressure, and might be buried or not, or protected by physical barriers such as walls. The vulnerability of the potential targets should therefore be investigated in order to assess the risk of propagation of the accidents since cascading sequences of accidents, explosions and fires may take place within the industrial plant, giving rise to the domino effect that threatens any industrial plant. The present research describes the risk of domino effect occurrence. The methodology is developed so that it can be operational and valid for any industrial site. It is supposed to be valid for a set of sizes, forms and kinds of tanks as well as a given geometric disposal on the industrial site. The interaction and the behavior of the targets affected or impacted by the first explosion effects should be described thanks to adequate simplified or sophisticated mechanical models: perforation and penetration of metal fragments when they impact surrounding tanks, as well as global failure such as overturning, buckling, excessive bending or shear effects, etc. The vulnerability analysis is detailed for the case of tanks under the mechanical effects generated by tsunamis.eng
dc.description.abstractEste documento presenta un marco probabilístico integrado que trata los accidentes industriales y los efectos dominó que pueden producirse en una planta industrial. En el presente trabajo se detalla el caso particular de los tsunamis: modelos simplificados para las profundidades de las inundaciones y los run-ups, así como sus efectos mecánicos en los tanques industriales. El accidente inicial puede ser causado por condiciones severas de servicio en cualquiera de los tanques, ya sea bajo o a presión atmosférica, o desencadenado por un peligro natural como un terremoto, un tsunami o inundaciones extremas, por ejemplo. Este evento inicial genera, en general, un conjunto de fragmentos estructurales, una bola de fuego, una onda expansiva, así como pérdidas críticas de contención (liberación y pérdida de líquidos y gases). Las instalaciones circundantes pueden sufrir graves daños y también pueden ser una nueva fuente de accidentes y explosiones generando después una nueva secuencia de fragmentos estructurales, bola de fuego, onda expansiva y pérdida de confinamiento. Los fragmentos estructurales, la forma de la onda expansiva y las características de la bola de fuego pueden describirse a partir de la base de datos y de la información recogida en accidentes anteriores. Los tanques circundantes pueden estar bajo o a presión atmosférica, y pueden estar enterrados o no, o protegidos por barreras físicas como muros. Por lo tanto, debe investigarse la vulnerabilidad de los objetivos potenciales para evaluar el riesgo de propagación de los accidentes, ya que pueden producirse secuencias en cascada de accidentes, explosiones e incendios dentro de la planta industrial, dando lugar al efecto dominó que amenaza a cualquier planta industrial. La presente investigación describe el riesgo de ocurrencia del efecto dominó. La metodología se desarrolla de forma que pueda ser operativa y válida para cualquier planta industrial. Se supone que es válida para un conjunto de tamaños, formas y tipos de depósitos, así como para una determinada disposición geométrica en el emplazamiento industrial. La interacción y el comportamiento de los objetivos afectados o impactados por los primeros efectos de la explosión deben describirse gracias a modelos mecánicos adecuados, simplificados o sofisticados: perforación y penetración de fragmentos metálicos cuando impactan en los tanques circundantes, así como fallos globales como el vuelco, el pandeo, los efectos de flexión o cizallamiento excesivos, etc. El análisis de vulnerabilidad se detalla para el caso de los tanques bajo los efectos mecánicos generados por los tsunamis. Traducción realizada con la versión gratuita del traductor www.DeepL.com/Translatorspa
dc.format.extent36 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherSpringer Naturespa
dc.relation.ispartofseriesNTHR;Vol. 35
dc.rights© Springer Science+Business Media Dordrecht 2014eng
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/spa
dc.titleDomino Effects and Industrial Risks: Integrated Probabilistic Framework – Case of Tsunamis Effectseng
dc.typeCapítulo - Parte de Librospa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_14cbspa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.contributor.researchgroupEstructuras y Materialesspa
dc.identifier.doi10.1007/978-94-007-7269-4_15
dc.publisher.placeSwitzerlandspa
dc.relation.citationendpage307spa
dc.relation.citationstartpage271spa
dc.relation.indexedN/Aspa
dc.relation.ispartofbookTsunami Events and Lessons Learnedeng
dc.relation.referencesAbbasi T, Abbasi SA (2007) The boiling liquid expanding vapour explosion (BLEVE): mechanism, consequence assessment, management. J Hazard Mater 141:489–519spa
dc.relation.referencesAbe K (1993) Estimate of tsunami heights from earthquake magnitudes. In: Proceedings of the IUGG/IOC international tsunami symposium TSUNAMI’93, Wakayamaspa
dc.relation.referencesAbe K (1995) Modeling of the runup heights of the hokkaido-nansei-Oki tsunami of 12 July 1993. Pure Appl Geophys 144(3/4):113–124spa
dc.relation.referencesAli SY, Li QM (2008) Critical impact energy for the perforation of metallic plates. Nucl Eng Des 238:2521–2528spa
dc.relation.referencesAntonioni G, Spadoni G, Cozzani V (2009) Application of domino effect quantitative risk assessment to an extended industrial area. J Loss Prev Process Ind 22:614–624spa
dc.relation.referencesARIA base of BARPI, France. www.aria.environnement.gouv.frspa
dc.relation.referencesASCE (2010) Minimum design loads for buildings and other structures, ASCE/SEI standard. American Society of Civil Engineers, Reston, pp 7–10spa
dc.relation.referencesAskan A, Yucemen MS (2010) Probabilistic methods for the estimation of potential seismic damage: application to reinforced concrete buildings in Turkey. Struct Saf 32:262–271, Elsevierspa
dc.relation.referencesATC (2008) Guidelines for Design of Structures for Vertical Evacuation from Tsunamis, FEMA P646. Applied Technology Council. Redwood City, California, For the Federal Emergency Management Agency, FEMA and the National Oceanic and Atmospheric Administration, NOAA.: 158 pspa
dc.relation.referencesATC (2011) Coastal Construction Manual, FEMA P-55. Applied Technology Council. Redwood City, California, For the Federal Emergency Management Agency FEMA. II: 400 pspa
dc.relation.referencesBatdorf SB (1974) A simplified method of elastic-stability analysis for thin cylindrical shells. NACA report – 874: 25 pspa
dc.relation.referencesBeltrami GM, Di Risio M (2011) Algorithms for automatic, real-time tsunami detection in wind-wave measurements. Part I: implementation strategies and basic tests. Coast Eng 58:1062–1071, Elsevierspa
dc.relation.referencesBørvik T, Hooperstad OS, Langseth M, Malo KA (2003) Effect of target thickness in blunt projectile penetration of Weldox 460 E steel plates. Int J Impact Eng 28:413–464spa
dc.relation.referencesBurwell D, Tolkova E, Chawla A (2007) Diffusion and dispersion characterization of a numerical tsunami model. Ocean Model 19:10–30, Elsevierspa
dc.relation.referencesCCH (2000) City and county of Honolulu building code. Department of Planning and Permitting of Honolulu Hawaii, Honoluluspa
dc.relation.referencesCEN (2007) EN 1993-1-6 eurocode 3: design of steel structures, part 1.6: strength and stability of shell structures. CEN, Brusselsspa
dc.relation.referencesChen L, Rotter M (2012) Buckling of anchored cylindrical shells of uniform thickness under wind load. Eng Struct 41:199–208spa
dc.relation.referencesCheung KF, Wei Y, Yamazaki Y, Yim SCS (2011) Modeling of 500-year tsunamis for probabilistic design of coastal infrastructures in the pacific northwest. Coast Eng 58:970–985, Elsevierspa
dc.relation.referencesConstantin A (2009) On the relevance of soliton theory to tsunami modelling. Wave Motion 46:420–426, Elsevierspa
dc.relation.referencesCorbet GG, Reid SR, Johnson W (1995) Impact loading of plates and shells by free flying projectiles: a review. J Impact Eng 18:141–230, 0734-743X(95)00023-2spa
dc.relation.referencesCozzani V, Salzano E (2004) The quantitative assessment of domino effects caused by overpressure- Part I: probit models. J Hazard Mater A107:67–80spa
dc.relation.referencesDemetracopoulos AC, Hadjitheodorou C, Antonopoulos JA (1994) Statistical and numerical analysis of tsunami wave heights in confined waters. Ocean Eng 21(7):629–643, Pergamonspa
dc.relation.referencesEckert S, Jelinek R, Zeug G, Krausmann E (2012) Remote sensing-based assessment of tsunami vulnerability and risk in Alexandria, Egypt. Appl Geogr 32:714–723, Elsevierspa
dc.relation.referencesFederal Emergency Management Agency, FEMA, USA. http://www.fema.gov/photolibrary/photo_details.do?id=42405spa
dc.relation.referencesFlouri ET, Kalligeris N, Alexandrakis G, Kampanis NA, Synolakis CE (2011) Application of a finite difference computational model to the simulation of earthquake generated tsunamis. Appl Numer Math 67:111–125. doi: 10.1016/j.apnum.2011.06.003, Elsevierspa
dc.relation.referencesGEBCO (2012) General Bathymetric Chart of the Oceans. Retrieved 15 June 2012, from www.gebco.netspa
dc.relation.referencesGodoy LA (2007) Performance of storage tanks in oil facilities damaged by Hurricanes Katrina and Rita. J Perform Constructed Facil 21(6):441–449spa
dc.relation.referencesGoto Y (2008) Tsunami damage to oil storage tanks. In: The 14 World Conference on Earthquake Engineering, Beijingspa
dc.relation.referencesGoto K, Chagué-Goff C, Fujino S, Goff J, Jaffe B, Nishimura Y, Richmond B, Sugawara D, Szczucinski W, Tappin DR, Witter RC, Yulianto E (2011) New insights of tsunami hazard from the 2011 Tohoku-oki event. Mar Geol 290:46–50, Elsevierspa
dc.relation.referencesGrasso VF, Singh A (2008) Global environmental alert service (GEAS). Adv Space Res 41:1836–1852, Elsevierspa
dc.relation.referencesHaugen KB, Lovholt F, Harbitz CB (2005) Fundamental mechanisms for tsunami generation by submarine mass flows in idealised geometries. Mar Metroleum Geol 22:209–217, Elsevierspa
dc.relation.referencesHeidarzadeh M, Pirooz MD, Zaker NH (2009) Modeling of the near-field effects of the worst-case tsunami in the Makran subduction zone. Ocean Eng 36:368–376, Elsevierspa
dc.relation.referencesHelal MA, Mehanna MS (2008) Tsunamis from nature to physics. Chaos Solitons Fractals 36:787–796, Elsevierspa
dc.relation.referencesHolden PL (1988) Assessment of missile hazards: review of incident experience relevant to major hazard plant. Safety and reliability directorate, Health & Safety Directoratespa
dc.relation.referencesINERIS (2011) (in French) Note de caractérisation du comportement des équipements industriels à l’inondation. Rapport d'étude DRA-. Adrien Willot et Agnès Vallée, Institut National de l'Environnement Industriel et des Risquesspa
dc.relation.referencesJin D, Lin J (2011) Managing tsunamis through early warning systems: a multidisciplinary approach. Ocean Coast Manag 54:189–199, Elsevierspa
dc.relation.referencesKharif C, Pelinovsky E (2005) Asteroids impact tsunamis. Physique 6:361–366spa
dc.relation.referencesKoshimura S, Namegaya Y et al (2009) Tsunami fragility – a New measure to identify tsunami damage. J Disaster Res 4(6):479–490spa
dc.relation.referencesLees FP (2005) Loss prevention in the process industries, 3rd edn. Butterwort Heinemann, Oxfordspa
dc.relation.referencesLeone F, Lavigne F, Paris R, Denain JC, Vinet F (2011) A spatial analysis of the December 26th, 2004 tsunami-induced damages: lessons learned for a better risk assessment integrating buildings vulnerability. Appl Geogr 31:363–375, Elsevierspa
dc.relation.referencesLiu PLF, Wang X, Salisbury AJ (2009) Tsunami hazard and early warning system in South China Sea. J Asian Earth Sci 36:2–12, Elsevierspa
dc.relation.referencesLovholt F, Glimsdal S, Harbitz CB, Zamora N, Nadim F, Peduzzi P, Dao H, Smebye H (2011) Tsunami hazard and exposure on the global scale. Earth-Sci Rev, Elsevier. doi:10.1016/j.earscirev.2011.10.002spa
dc.relation.referencesLukkunaprasit P, Thanasisathit N et al (2009) Experimental verification of FEMA P646 tsunami loading. J Disaster Res 4(6):410–418spa
dc.relation.referencesMadsen PA (2010) On the evolution and run-up of tsunamis. J Hydrodyn 22:1–6. doi: 10.1016/S1001-6058(09)60160-8, Elsevierspa
dc.relation.referencesMarhavilas PK, Koulouriotis D, Gemeni V (2011) Risk analysis and assessment methodologies in the work sites : on a review, classification and comparative study of the scientific literature of the period 2000–2009. J Loss Prev Process Industries 24(5):477–523spa
dc.relation.referencesMebarki A, Mercier F, Nguyen QB, Ami Saada R, Meftah F, Reimeringer M (2007) A probabilistic model for the vulnerability of metal plates under the impact of cylindrical projectiles. J Loss Prev Process Industries 20:128–134spa
dc.relation.referencesMebarki A, Genatios C, Lafuente M (2008a) Risques Naturels et Technologiques : Aléas, Vulnérabilité et Fiabilité des Constructions – vers une formulation probabiliste intégrée. Presses Ponts et Chaussées, Paris, ISBN 978-2-85978-436-2spa
dc.relation.referencesMebarki A, Mercier F, Nguyen QB, Ami Saada R, Meftah F, Reimeringer M (2008b) Reliability analysis of metallic targets under metallic rods impact: towards a simplified probabilistic approach. J Loss Prev Process Industries 21:518–527spa
dc.relation.referencesMebarki A, Mercier F, Nguyen QB, Ami Saada R (2009a) Structural fragments and explosions in industrial facilities. Part I: probabilistic description of the source terms. J Loss Prev Process Industries 22(4):408–416. doi: 10.1016/j.jlp.2009.02.006spa
dc.relation.referencesMebarki A, Mercier F, Nguyen QB, Ami Saada R (2009b) Structural fragments and explosions in industrial facilities. Part II: projectile trajectory and probability of impact. J Loss Prev Process Industries 22(4):417–425, 10.1016/j.jlp.2009.02.005spa
dc.relation.referencesMebarki A (2009) A comparative study of different PGA attenuation and error models: case of 1999 Chi-Chi earthquake. Tectonophysics 466:300–306spa
dc.relation.referencesMingguang Z, Juncheng J (2008) An improved probit method for assessment of domino effect to chemical process equipment caused by overpressure. J Hazard Mater 158:280–286spa
dc.relation.referencesNaito C, Cox D et al (2012) Fuel storage container performance during the 2011 Tohoku japan tsunami. J Perform Constr Fac, 10.1061/(ASCE)CF.1943-5509.0000339spa
dc.relation.referencesNandasena NAK, Paris R, Tanaka N (2011) Reassessment of hydrodynamic equations: minimum flow velocity to initiate boulder transport by high energy events (storms, tsunamis). Mar Geol 281:70–84, Elsevierspa
dc.relation.referencesNeilson AJ (1985) Empirical equations for the perforation of mild steel plates. J Impact Eng 3:137–142spa
dc.relation.referencesNishi H (2012) Damage on Hazardous Materials Facilities. In: international symposium on engineering lessons learned from the 2011 Great East Japan Earthquake, Tokyospa
dc.relation.referencesNistor I, Palermo D et al (2010) Experimental and numerical modeling of tsunami loading on structures. In: International conference on coastal engineering, ASCEspa
dc.relation.referencesNistor I, Palermo D et al (2010b) In: Kim YC (ed) Tsunami-induced forces on structures. Handbook of coastal and ocean engineering. World Scientific Publishing Co. Pte. Ltd, Singapore, pp 261–286spa
dc.relation.referencesNorio O, Ye T, Kajitani Y, Shi P, Tatano H (2011) The 2011 Eastern Japan great earthquake disaster: overview and comments. Int J Disaster Risk Sci 2(1):34–42spa
dc.relation.referencesOhte S, Yoshizawa H, Chiba N, Shida S (1982) Impact strength of steel plates struck by projectiles. Bull Japan Soc Mech Eng 25:1226–1231spa
dc.relation.referencesPalermo D, Nistor I (2008) Tsunami-induced loading on structures. Structure Magazine 3:10–13spa
dc.relation.referencesPophet N, Kaewbanjak N, Asavanant J, Ioualalen M (2011) High grid resolution and parallelized tsunami simulation with fully nonlinear Boussinesq equations. Comput Fluids 40:258–268, Elsevierspa
dc.relation.referencesReese S, Bradley BA, Bind J, Smart G, Power W, Sturman J (2011) Empirical building fragilities from observed damage in the 2009 South Pacific tsunami. Earth Sci Rev 107:156–173, Elsevierspa
dc.relation.referencesRuiz C, Salvatorelli-D’Angelo F, Thompson VK (1989) Elastic response of thin-wall cylindrical vessels to blast loading. Comput Fluids 32(5):1061–1072spa
dc.relation.referencesSaatçioğlu M (2009) Performance of structures during the 2004 Indian Ocean tsunami and tsunami induced forces for structural design. Earthquake Tsunamis 11:153–178, A. T. Tankut, Springer Netherlandsspa
dc.relation.referencesSakakiyama T, Matsuura S et al (2009) Tsunami force acting on oil tanks and buckling analysis for tsunami pressure. J Disaster Res 4(6):427–435spa
dc.relation.referencesSeveso Inspection Tool (2009) Réservoirs de stockage aériens atmosphériques, Deuxième version test, CRC/SIT/012-Fspa
dc.relation.referencesSladen A, Hébert H, Schindelé F, Reymond D (2007) L’aléa tsunami en polynésie française : apports de la simulation numérique. C R Géosci 339:303–316, Elsevierspa
dc.relation.referencesSuguino H, Iwabuchi Y et al (2008) Development of probabilistic methodology for evaluating tsunami risk on nuclear power plants. In: The 14th World Conference on Earthquake Engineering, Beijingspa
dc.relation.referencesTalaslidis DG, Manolis GD, Paraskevopoulos E, Panagiotopoulos C, Pelekasis N (2004) The Sun website, UK: http://www.thesun.co.uk/sol/homepage/news/3615721/Four-die-in-oil-refinery-explosion.htmlspa
dc.relation.referencesTNO (2005a) Methods for the calculation of possible damage to people and objects resulting from releases from hazardous materials. The Green Book CPR16Espa
dc.relation.referencesTNO (2005b) Methods for the calculations of physical effects – due to release of hazardous materials (liquids and gases). The Yellow Book CPR14E 2005spa
dc.relation.referencesTodorovska MII, Hayir A, Trifunac MD (2002) A note on tsunami amplitudes above submarine slides and slumps. Soil Dyn Earthq Eng 22:129–141, Elsevierspa
dc.relation.referencesTsamopoulos JA (2004) Risk analysis of industrial structures under extreme transient loads. Soil Dyn Earthq Eng 24:435–448spa
dc.relation.referencesUniversità degli Studi di Torino. Laboratory of Molecular Electrochemistry, Italy. http://lem.ch.unito.it/didattica/infochimica/2008_Esplosivi/Explosion.htmlspa
dc.relation.referencesUSGS (2011) United States Geological Survey. Retrieved 13/03/2012, 2012, from www.usgs.govspa
dc.relation.referencesvan den Berg AC (1985) The multi-energy method, a framework for vapor cloud explosion blast prediction. J Hazard Mater 12:1–10spa
dc.relation.referencesvan Zijll de Jong SL, Dominey-Howes D, Roman CE, Calgaro E, Gero A, Veland S, Bird DK, Muliaina T, Tuiloma-Sua D, Afioga TL (2011) Process, practice and priorities – key lessons learnt undertaking sensitive social reconnaissance research as part of an (UNESCO-IOC) International Tsunami Survey Team. Earth-Sci Rev 107:174–192, Elsevierspa
dc.relation.referencesWard SN (2011) In: Gupta HK (ed) Tsunamis. Encyclopedia of solid earth geophysics. Springer, Dordrecht, pp 1473–1492spa
dc.relation.referencesWijetunge JJ (2006) Tsunami on 26 December 2004: spatial distribution of tsunami height and the extent of inundation in Sri Lanka. Sci Tsunami Haz 24(3):225–240spa
dc.relation.referencesWilson RI, Dengler LA, Goltz JD, Legg MR, Miller KM, Ritchie A, Whitmore PM (2011) Emergency response and field observation activities of geoscientists in California (USA) during the September 29, 2009, Samoa Tsunami. Earth-Sci Rev 107:193–200, Elsevierspa
dc.relation.referencesXie M (2007) Thermodynamic and gas dynamic aspects of a BLEVE, Delft University of Technology, No.: 04–200708spa
dc.relation.referencesYeh H (2008) Maximum fluid forces in the tsunami runup zone. J Waterw Port Coast Ocean Eng 132(6):496–501spa
dc.relation.referencesZhang DH, Yip TL, Ng CO (2009) Predicting tsunami arrivals: estimates and policy implications. Mar Policy 33:643–650, Elsevierspa
dc.relation.referencesZhao BB, Duan WY, Webster WC (2011) Tsunami simulation with Green-Naghdi theory. Ocean Eng 3:389–396, Elsevierspa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.armarcTsunamisspa
dc.subject.armarcAccidentes de trabajospa
dc.subject.armarcEdificios industrialesspa
dc.subject.armarcIndustrial buildingseng
dc.subject.proposalTsunamiseng
dc.subject.proposalIndustrial accidentseng
dc.subject.proposalExplosionseng
dc.subject.proposalDomino effecteng
dc.subject.proposalAtmospheric tankeng
dc.subject.proposalTank under pressureeng
dc.subject.proposalRisk of failureeng
dc.type.coarhttp://purl.org/coar/resource_type/c_3248spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bookPartspa
dc.type.redcolhttps://purl.org/redcol/resource_type/CAP_LIBspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

© Springer Science+Business Media Dordrecht 2014
Excepto si se señala otra cosa, la licencia del ítem se describe como © Springer Science+Business Media Dordrecht 2014