Mostrar el registro sencillo del ítem

dc.contributor.authorTorres Franco, Sebastian
dc.contributor.authorDurán Tovar, Ivan Camilo
dc.contributor.authorSuárez Pradilla, Mónica Marcela
dc.contributor.authorMarulanda Guerra, Agustin
dc.date.accessioned2022-01-12T21:42:02Z
dc.date.available2022-01-12T21:42:02Z
dc.date.issued2021
dc.identifier.issn20429746
dc.identifier.urihttps://repositorio.escuelaing.edu.co/handle/001/1944
dc.description.abstractThe lack of public charging infrastructure has been one of the main barriers preventing the technological transition from traditional vehicles to electric vehicles. To accelerate this technological transition, it is necessary to elaborate optimal charging station location strategies to increase the user confidence, and maintain investment costs within acceptable levels. However, the existing works for this purpose are often based on multipath considerations or multi-objective functions, that result in taxing computational efforts for urban transportation networks. This article presents a heuristic methodology for urban transportation networks, that considers the deployment of the charging stations for coverage purposes, and the fulfilment of user preferences and constraints as two separated processes. In this methodology, a Reallocation Algorithm is formulated to prioritize the selection of Locations of Interest, and to reduce the number of stations with overlapping covering areas. The methodology results are compared to those drawn from a Greedy Algorithm based on a multipath consideration, in an extensive metropolitan transportation network. The results show that the proposed methodology significantly reduce the computational time required for solving the location problem, and furthermore, allows for similar results to those obtained when considering k = 2 and k = 3 deviation paths.eng
dc.description.abstractLa falta de infraestructura pública de recarga ha sido una de las principales barreras que ha impedido la transición tecnológica de los vehículos tradicionales a los eléctricos. Para acelerar esta transición tecnológica, es necesario elaborar estrategias óptimas de ubicación de estaciones de carga para aumentar la confianza del usuario y mantener los costos de inversión dentro de niveles aceptables. Sin embargo, los trabajos existentes para este propósito a menudo se basan en consideraciones de caminos múltiples o funciones de objetivos múltiples, que resultan en esfuerzos computacionales difíciles para las redes de transporte urbano. Este artículo presenta una metodología heurística para redes de transporte urbano, que considera el despliegue de las estaciones de carga con fines de cobertura y el cumplimiento de las preferencias y restricciones de los usuarios como dos procesos separados. En esta metodología, se formula un algoritmo de reasignación para priorizar la selección de ubicaciones de interés y reducir la cantidad de estaciones con áreas de cobertura superpuestas. Los resultados de la metodología se comparan con los extraídos de un Algoritmo Greedy basado en una consideración de trayectos múltiples, en una extensa red de transporte metropolitano. Los resultados muestran que la metodología propuesta reduce significativamente el tiempo computacional requerido para resolver el problema de ubicación y además, permite obtener resultados similares a los obtenidos al considerar k = 2 y k = 3 caminos de desviación.spa
dc.format.extent14 páginas.spa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.publisherJohn Wiley & Sons Ltdspa
dc.rights© 2021 The Authorseng
dc.sourcehttps://ietresearch.onlinelibrary.wiley.com/doi/10.1049/els2.12011spa
dc.titleElectric vehicle charging stations’ location in urban transportation networks: A heuristic methodology.eng
dc.typeArtículo de revistaspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.contributor.researchgroupManufactura y Serviciosspa
dc.relation.citationendpage147spa
dc.relation.citationstartpage134spa
dc.relation.citationvolume11spa
dc.relation.indexedN/Aspa
dc.relation.ispartofjournalElectrical Systems in Transportationeng
dc.relation.referencesInternational Energy Agency: Global EV outlook 2018 (2018). https://www.iea.org/reports/global-ev-outlook-2018spa
dc.relation.referencesLandi, M.M., Mohammadi, M., Rastegar, M.: Simultaneous determination of optimal capacity and charging profile of plug-in electric vehicle parking lots in distribution systems. Energy. 158, 504– 511 (2018)spa
dc.relation.referencesAlhazmi, Y.A., Mostafa, H.A., Salama, M.M.: Optimal allocation for electric vehicle charging stations using trip success ratio. Int. J. Electr. Power Energy Syst. 91, 101– 116 (2017)spa
dc.relation.referencesNoel, L., de Rubens, G.Z., Sovacool, B.K., Kester, J.: Fear and loathing of electric vehicles: the reactionary rhetoric of range anxiety. Energy Res. Social Sci. 48, 96– 107 (2019)spa
dc.relation.referencesBonges, H.A., Lusk, A.C.: Addressing electric vehicle (EV) sales and range anxiety through parking layout, policy and regulation. Transport. Res. Pol. Pract. 83, 63– 73 (2016)spa
dc.relation.referencesMatteo, M.: Impact of uncoordinated plug-in electric vehicle charging on residential power demand. Nat. Energy. 3, 193– 201 (2018)spa
dc.relation.referencesZhao, H., Li, N.: Optimal siting of charging stations for electric vehicles based on fuzzy delphi and hybrid multi-criteria decision making approaches from an extended sustainability perspective. Energies. 9(4), 1– 22 (2016)spa
dc.relation.referencesHe, S.Y., Kuo, Y., Wua, D.: Incorporating institutional and spatial factors in the selection of the optimal locations of public electric vehicle charging facilities: a case study of Beijing, China. Transport. Res. Part C. 67, 131– 148 (2016)spa
dc.relation.referencesWirges, J., Linder, S., Kessler, A.: Modelling the development of a regional charging infrastructure for electric vehicles in time and space. EJTIR. 12(4), 391– 416 (2012)spa
dc.relation.referencesSechilariu, M., Molines, N., Richard, G., Martell-Flores, H., Locment, F., Baert, J.: Electromobility framework study: infrastructure and urban planning for EV charging station empowered by PV-based microgrid. IET Electr. Syst. Transp. 9(4), 176– 185 (2019)spa
dc.relation.referencesBudde, T., Wells, P., Cipcigan, L.: Can innovative business models overcome resistance to electric vehicles? Better place and battery electric cars in Denmark. Energy Policy. 48, 498– 505 (2012)spa
dc.relation.referencesZhang, H., Hu, Z., Xu, Z., Song, Y.: An integrated planning framework for different types of PEV charging facilities in urban area. IEEE Trans. Smart Grid. 7(5), 2273– 2284 (2016)spa
dc.relation.referencesLam, A.Y.S., Leung, Y., Chu, X.: Electric vehicle charging station placement: formulation, complexity, and solutions. IEEE Trans. Smart Grid. 5(6), 2846– 2856 (2014)spa
dc.relation.referencesDeb, S., Tammi, K., Kalita, K., Mahanta, P.: Review of recent trends in charging infrastructure planning for electric vehicles. WIREs Energy Environ. 7(6), 1– 26 (2018)spa
dc.relation.referencesShukla, A., Verma, K., Kumar, R.: Multi-objective synergistic planning of EV fast-charging stations in the distribution system coupled with the transportation network,IET Generat. Transm. Distrib. 13(15), 3421– 3432 (2019)spa
dc.relation.referencesRajabi-Ghahnavieh, A., Sadeghi-Barzani, P.: Optimal zonal fast-charging station placement considering urban traffic circulation. IEEE Trans. Veh. Technol. 66(1), 45– 56 (2017)spa
dc.relation.referencesCenso Nacional de PoblaciónVivienda y Explorador de datos (2018). https://sitios.dane.gov.co/cnpv/#!/ November 2019. Colombia.spa
dc.relation.referencesXiong Gan, Y.J., An, B., Miao, C., Bazzan, A.L.C.: Optimal electric vehicle fast charging station placement based on game theoretical framework. IEEE Trans. Intell. Transport. Syst. 19(8), 2493– 2504 (2018)spa
dc.relation.referencesZhang, Y., Liu, X., Zhang, T., Gu, Z.: Review of the electric vehicle charging station location problem, Dependability Sens. Cloud Big Data Syst. Appl. DependSys. 1123, 435– 445 (2019)spa
dc.relation.referencesKo, J., Kim, D., Nam, D., Lee, T.: Determining locations of charging stations for electric taxis using taxi operation data. Transport. Plan. Technol. 40, 420– 433 (2017)spa
dc.relation.referencesDaskin, M.S., Maass, K.L.: The p-Median Problem. In: Location Science, pp. 21– 45. Springer (2015).spa
dc.relation.referencesLin, C., Lin, C.: The p-center flow-refueling facility location problem. Transport. Res. Part B. 118, 124—142 (2018)spa
dc.relation.referencesDaskin, M.S.: A maximum expected covering location model: formulation, properties and heuristic solution. Transport. Sci. 17(1), 712– 716 (1983)spa
dc.relation.referencesDavidov, S., Pantoš, M.: Planning of electric vehicle infrastructure based on charging reliability and quality of service. Energy. 118(1), 1156– 1167 (2017)spa
dc.relation.referencesLiu, Y., Xiang, Y., Tan, Y., Wang, B., Liu, J., Yang, Z.: Optimal allocation model for EV charging stations coordinating investor and user benefits. IEEE Access. 6, 36039– 36049 (2018)spa
dc.relation.referencesLuo, C., Huang, Y., Gupta, V.: ‘Placement of EV charging stations—balancing benefits among multiple entities. IEEE Trans. Smart Grid. 8(2), 759– 768 (2018)spa
dc.relation.referencesLi, S., Huang, Y.: Heuristic approaches for the flow-based set covering problem with deviation paths. Transport. Res. E Logist. Transport. Rev. 72, 144– 158 (2014)spa
dc.relation.referencesLiu, H., Jin, C., Yang, B., Zhou, A.: Finding top-k shortest paths with diversity. IEEE Trans. Knowl. Data Eng. 30(3), 488– 502 (2018)spa
dc.relation.referencesZhang, H., Moura, S.J., Hu, Z., Song, Y.: PEV fast-charging station siting and sizing on coupled transportation and power networks. IEEE Trans. Smart Grid. 9(4), 2595– 2605 (2018)spa
dc.relation.referencesAljaidi, M., Aslam, N., Chen, X., Kaiwartya, O., Khalid, M.: Proc. 11th International Conference on Information and Communication Systems (ICICS), pp. 161– 166 (2020). An energy efficient strategy for assignment of electric vehicles to charging stations in urban environmentsspa
dc.relation.referencesMao, D., Wang, J., Tan, J., Liu, G., Xu, Y., Li, J.: Location planning of fast charging station considering its impact on the power grid assets. Proc. IEEE Transportation Electrification Conference and Expo (ITEC), 1– 5 (2019)spa
dc.relation.referencesBi, R., Xiao, J., Pelzer, D., Ciechanowicz, D., Eckhoff, D., Knoll, A., pp. 1– 7. Proc. 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC) (2017). A simulation-based heuristic for city-scale electric vehicle charging station placementspa
dc.relation.referencesAndrade, J., Ochoa, L.F., Freitas, W.: Regional-scale allocation of fast charging stations: travel times and distribution system reinforcements. IET Gen. Transm. Distrib. 14(19), 4225– 4233 (2020)spa
dc.relation.referencesGiménez-Gaydou, D.A., Ribeiro, A.S.N., Gutiérrez, J., Antunes, A.P.: Optimal location of battery electric vehicle charging stations in urban areas: a new approach. Int. J. Sustainable Transport. 10(5), 393– 405 (2016)spa
dc.relation.referencesDeb, S., Tammi, K., Gao, X., Kalita, K., Mahanta, P.: A hybrid multi-objective chicken swarm optimization and teaching learning based algorithm for charging station placement problem. IEEE Access. 8, 92573– 92590 (2020)spa
dc.relation.referencesZhang, Y., Liu, X., Zhang, T., Gu, Z.: ‘Review of the electric vehicle charging station location problem. Proc. 5th International Conference on Dependability in Sensor, Cloud, and Big Data Systems and Applications. DependSys. 1123, 435– 445 (2019)spa
dc.relation.referencesMelaina, M., Bremson, J.: Refueling availability for alternative fuel vehicle markets: sufficient urban station coverage. Energy Pol. 36, 3233– 3241 (2008)spa
dc.relation.referencesRuiz Estupiñán, N.H.: Estudio de la estructura urbana e identificación y análisis del impacto de la localización de la actividad económica sobre las dinámicas territoriales: El caso de Bogotá, Colombia, Ph.D. thesis, Universitat Politecnica de Catalunya (2016)spa
dc.relation.references‘Zonas de Análisis de Transporte 2016, https://bogota-laburbano.opendatasoft.com/explore/dataset/zat/information/?location=10,4.5997,-74.02519&basemap=jawg.streetsspa
dc.relation.referencesAvendaño, J.: Three essays on urban spatial structure in Bogotá D.C. Ph.D. thesis, Universitat Autonoma de Barcelona (2012)spa
dc.relation.referencesYen, J.Y.: Finding the K shortest loopless paths in a network. Manag. Sci. 17(11), 712– 716 (2019)spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.rights.creativecommonsAtribución 4.0 Internacional (CC BY 4.0)spa
dc.subject.armarcVehículos eléctricosspa
dc.subject.armarcElectric vehicleseng
dc.subject.armarcAlgoritmos heurísticosspa
dc.subject.armarcHeuristic algorithmseng
dc.subject.armarcEstaciones de carga de batería (Vehículos eléctricos)spa
dc.subject.armarcBattery charging stations (Electric vehicles)eng
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem