Show simple item record

dc.contributor.advisorOndo Méndez, Alejandro Oyono
dc.contributor.advisorRodríguez Burbano, Diana Consuelo
dc.contributor.authorRueda Parra, Carlos Arturo.
dc.date.accessioned2022-08-08T03:56:16Z
dc.date.available2022-08-08T03:56:16Z
dc.date.issued2022
dc.identifier.urihttps://repositorio.escuelaing.edu.co/handle/001/2108
dc.description.abstractLos puntos de carbono con emisión azul son potencialmente oxidantes cuando se irradian con una longitud de onda de 365nm. Este efecto oxidante puede resultar beneficioso para aplicaciones concernientes a la fototerapia. El principio de esta técnica para el tratamiento del cáncer es generar especies reactivas de oxígeno (ROS) por medio de la conversión fototérmica en el interior de las células cancerosas. Esta conversión genera una hipertermia localizada que produce hidrólisis dentro del citosol de las células y como consecuencia genera ROS. Estas terapias suelen estar reforzadas con agentes fotosensibilizantes, que son básicamente moléculas que intensifican el estrés oxidativo produciendo ROS, por un mecanismo diferente a la hidrólisis generada por el calor, conocido como efecto fotodinámico. El objetivo de este proyecto es evaluar las propiedades fotodinámicas de los puntos de carbono sintetizados a partir de isoleucina y ácido cítrico para su potencial uso como agente antitumoral. Para corroborar esta hipótesis, se sintetizaron puntos de carbono a partir de ácido cítrico e isoleucina por el método de reacción asistida por microondas. Este material fue evaluado en tres aspectos fundamentales, en un principio se analizaron las propiedades fisicoquímicas con el fin de tener un punto de partida para el diseño de la nanoplataforma con potencial antitumoral. En este punto, se obtuvieron los espectros de absorción y emisión que se emplearon para analizar la huella óptica de los PC-IS@AC. Estos exhibieron una absorbancia centrada entre 200nm y 300nm y una fluorescencia entre 430nm y 450nm al ser irradiados con una longitud de onda de 365nm. Adicionalmente, se analizó la composición superficial de los PC-IS@AC por medio de espectroscopia infrarroja por transformada de Fourier donde se encontraron las hibridaciones sp2 y sp3 características de los puntos de carbono y grupos funcionales nitrogenados que contribuyen con la fluorescencia azul.spa
dc.description.abstractCarbon dots with blue emission are potentially oxidizing when irradiated with a wavelength of 365nm. This oxidizing effect can be beneficial for applications concerning phototherapy. The principle of this technique for cancer treatment is to generate reactive oxygen species (ROS) through photothermal conversion inside cancer cells. This conversion generates a localized hyperthermia that produces hydrolysis within the cytosol of the cells and as a consequence generates ROS. These therapies are usually reinforced with photosensitizing agents, which are basically molecules that intensify oxidative stress by producing ROS, by a mechanism other than hydrolysis generated by heat, known as the photodynamic effect. The objective of this project is to evaluate the photodynamic properties of carbon dots synthesized from isoleucine and citric acid for their potential use as antitumor agents. To corroborate this hypothesis, carbon dots were synthesized from citric acid and isoleucine by the microwave-assisted reaction method. This material was evaluated in three fundamental aspects, initially the physicochemical properties were analyzed in order to have a starting point for the design of the nanoplatform with antitumor potential. At this point, the absorption and emission spectra were obtained and used to analyze the optical fingerprint of the PC-IS@AC. These exhibited absorbance centered between 200nm and 300nm and fluorescence between 430nm and 450nm when irradiated with a wavelength of 365nm. Additionally, the surface composition of PC-IS@AC was analyzed by means of Fourier transform infrared spectroscopy, where characteristic sp2 and sp3 hybridizations of carbon dots and nitrogenous functional groups that contribute to blue fluorescence were found.eng
dc.format.extent38 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isospaspa
dc.rightsDerechos reservados Universidad del Rosario y Escuela Colombiana de Ingeniería Julio garavitospa
dc.titleEvaluación de las propiedades fotodinámicas de puntos de carbono sintetizados a partir de isoleucina y ácido cítrico como posible agente fototerapéuticospa
dc.typeTrabajo de grado - Pregradospa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_abf2spa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.contributor.corporatenameUniversidad del Rosario, Escuela Colombiana de Ingeniería Julio Garavitospa
dc.contributor.researchgroupSynergiaspa
dc.description.degreelevelPregradospa
dc.description.degreenameIngeniero(a) Biomédico(a)spa
dc.description.researchareaBiomateriales para aplicaciones biomédicasspa
dc.identifier.urlhttps://catalogo.escuelaing.edu.co/cgi-bin/koha/opac-detail.pl?biblionumber=23098
dc.publisher.facultyEscuela de medicina y ciencias de la saludspa
dc.publisher.placeBogotáspa
dc.publisher.programIngeniería Biomédicaspa
dc.relation.indexedN/Aspa
dc.relation.references[1] A. A. Yetisgin, S. Cetinel, M. Zuvin, A. Kosar, and O. Kutlu, “Therapeutic nanoparticles and their targeted delivery applications,” Molecules, vol. 25, no. 9, p. 2193, 2020. [2] M. Liu, “Optical properties of carbon dots: a review,” Nanoarchitectonics, pp. 1–12, 2020. [3] S. Y. Lim, W. Shen, and Z. Gao, “Carbon quantum dots and their applications,” Chem. Soc. Rev., vol. 44, pp. 362–381, 2015. [4] P. Namdari, B. Negahdari, and A. Eatemadi, “Synthesis, properties and biomedical applications of carbon-based quantum dots: An updated review,” Biomedicine and Pharmacotherapy, vol. 87, pp. 209–222, 3 2017. [5] I. L. Christensen, Y. P. Sun, and P. Juzenas, “Carbon dots as antioxidants and prooxidants,” Journal of Biomedical Nanotechnology, vol. 7, pp. 667–676, 10 2011. [6] F. Salehi, F. Daneshvar, M. Karimi, R. D. Vais, M. A. Mosleh-Shirazi, and N. Sattarahmady, “Enhanced melanoma cell-killing by combined phototherapy/radiotherapy using a mesoporous platinum nanostructure.,” Photodiagnosis & Photodynamic Therapy, vol. 28, pp. 300–300–307, 2019. [7] H. L. H. Ph.D., C. R. M. Ph.D., J. J. C. Ph.D., and R. A. Ph.D., “Cancer.,” Magill’s Medical Guide (Online Edition), 2021. [8] T. Liu, Y. Song, Z. Huang, X. Pu, Y.Wang, G. Yin, L. Gou, J.Weng, and X. Meng, “Photothermal photodynamic therapy and enhanced radiotherapy of targeting copolymercoated liquid metal nanoparticles on liver cancer,” Colloids and Surfaces B: Biointerfaces, vol. 207, p. 112023, 2021. [9] Y. P. Sun, B. Zhou, Y. Lin, W. Wang, K. A. Fernando, P. Pathak, M. J. Meziani, B. A. Harruff, X. Wang, H. Wang, P. G. Luo, H. Yang, M. E. Kose, B. Chen, L. M. Veca, and S. Y. Xie, “Quantum-sized carbon dots for bright and colorful photoluminescence,” Journal of the American Chemical Society, vol. 128, pp. 7756–7757, 6 2006. [10] N. Vasimalai, V. Vilas-Boas, J. Gallo, M. de Fátima Cerqueira, M. Menéndez- Miranda, J. M. Costa-Fernández, L. Diéguez, B. Espiña, and M. T. Fernández- Argüelles, “Green synthesis of fluorescent carbon dots from spices for in vitro imaging and tumour cell growth inhibition,” Beilstein Journal of Nanotechnology, vol. 9, pp. 530–544, 2 2018. Item Citation: Beilstein Journal of Nanotechnology, Vol 9, 29 Iss 1, Pp 530-544 (2018)<br/><br/>Related Material: https://doaj.org/toc/2190- 4286<br/><br/>Accession Number: edsdoj.1aa4fcfa8c73402397b1f3205eb0a3c5; Publication Type: Academic Journal; Source: Beilstein Journal of Nanotechnology; Language: English; Format: electronic resource; Publication Date: 20180201; Imprint: Beilstein- Institut, 2018. [11] A. Valizadeh, H. Mikaeili, M. Samiei, S. M. Farkhani, N. Zarghami, M. Kouhi, A. Akbarzadeh, and S. Davaran, “Quantum dots: synthesis, bioapplications, and toxicity,” Nanoscale research letters, vol. 7, p. 480, 8 2012. [12] H. Hou, Z. Wang, Y. Ma, K. Yu, J. Zhao, H. Lin, and F. Qu, “Nir-driven intracellular photocatalytic oxygen-supply on metallic molybdenum carbide@n-carbon for hypoxic tumor therapy,” Journal of Colloid and Interface Science, vol. 607, pp. 1–15, 2022. [13] A. Khayal, V. Dawane, M. A. Amin, V. Tirth, V. K. Yadav, A. Algahtani, S. H. Khan, S. Islam, K. K. Yadav, and B. H. Jeon, “Advances in the methods for the synthesis of carbon dots and their emerging applications,” Polymers, vol. 13, 9 2021. [14] B. Vercelli, R. Donnini, F. Ghezzi, A. Sansonetti, U. Giovanella, and B. La Ferla, “Nitrogen-doped carbon quantum dots obtained hydrothermally from citric acid and urea: The role of the specific nitrogen centers in their electrochemical and optical responses,” Electrochimica Acta, vol. 387, p. 138557, 2021. [15] W. . . . Zhang and P. . . . Huang, ROS, vol. 2-2. Springer New York, 1 2017. Accession Number: edselc.2-52.0-85038958684; (Cancer Therapeutic Targets, 1 January 2017, 2- 2:935-944) Publication Type: Book; Rights: Copyright 2017 Elsevier B.V., All rights reserved. [16] H. Li, X. He, Z. Kang, H. Huang, Y. Liu, J. Liu, S. Lian, C. H. A. Tsang, X. Yang, and S.-T. Lee, “Water-soluble fluorescent carbon quantum dots and photocatalyst design,” Angewandte Chemie International Edition, vol. 49, no. 26, pp. 4430–4434, 2010. [17] H. Ming, Z. Ma, Y. Liu, K. Pan, H. Yu, F. Wang, and Z. Kang, “Large scale electrochemical synthesis of high quality carbon nanodots and their photocatalytic property,” Dalton Trans., vol. 41, pp. 9526–9531, 2012. [18] A. Alaghmandfard, O. Sedighi, N. T. Rezaei, A. A. Abedini, A. M. Khachatourian, M. S. Toprak, and A. Seifalian, “Recent advances in the modification of carbon-based quantum dots for biomedical applications,” Materials Science and Engineering: C, vol. 120, p. 111756, 2021. [19] Y. Wang and A. Hu, “Carbon quantum dots: synthesis, properties and applications,” Journal of Materials Chemistry C, vol. 2, no. 34, pp. 6921–6939, 2014. [20] H. Pang, X. Cao, L. Zhu, and M. Zheng, Synthesis of Functional Nanomaterials for Electrochemical Energy Storage. Springer, 2020. [21] H. M. Ng, G. Lim, and C. Leo, “Comparison between hydrothermal and microwaveassisted synthesis of carbon dots from biowaste and chemical for heavy metal detection: A review,” Microchemical Journal, vol. 165, p. 106116, 2021. 30 [22] D. Michael P áMingos et al., “Tilden lecture. applications of microwave dielectric heating effects to synthetic problems in chemistry,” Chemical society reviews, vol. 20, no. 1, pp. 1– 47, 1991. [23] DAIREM, “Nuestras tecnologías de calentamiento y secado para alimentación e industria - sairem.” [24] M. R. Rosana, J. Hunt, A. Ferrari, T. A. Southworth, Y. Tao, A. E. Stiegman, and G. B. Dudley, “Microwave-specific acceleration of a friedel–crafts reaction: Evidence for selective heating in homogeneous solution,” The Journal of Organic Chemistry, vol. 79, pp. 7437–7450, 8 2014. doi: 10.1021/jo501153r. [25] A. Eatemadi, H. Daraee, H. Karimkhanloo, M. Kouhi, N. Zarghami, A. Akbarzadeh, M. Abasi, Y. Hanifehpour, and S. W. Joo, “Carbon nanotubes: properties, synthesis, purification, and medical applications,” Nanoscale research letters, vol. 9, no. 1, pp. 1– 13, 2014. [26] W. H. Organization, “Cancer,” 9 2021. [27] G. Getachew, C. Korupalli, A. S. Rasal, and J.-Y. Chang, “Ros generation/scavenging modulation of carbon dots as phototherapeutic candidates and peroxidase mimetics to integrate with polydopamine nanoparticles/gox towards cooperative cancer therapy,” Composites Part B: Engineering, vol. 226, p. 109364, 2021. [28] K. Torres-Rivero, J. Bastos-Arrieta, N. Fiol, and A. Florido, “Chapter ten - metal and metal oxide nanoparticles: An integrated perspective of the green synthesis methods by natural products and waste valorization: applications and challenges,” in Biosynthesized Nanomaterials (S. K. Verma and A. K. Das, eds.), vol. 94 of Comprehensive Analytical Chemistry, pp. 433–469, Elsevier, 2021. [29] X. Hou, S. Lv, Z. Chen, and F. Xiao, “Applications of fourier transform infrared spectroscopy technologies on asphalt materials,” Measurement, vol. 121, pp. 304–316, 2018. [30] S. K. Bhatia and A. B. Yetter, “Correlation of visual in vitro cytotoxicity ratings of biomaterials with quantitative in vitro cell viability measurements,” Cell Biology and Toxicology, vol. 24, pp. 315–319, 8 2008. [31] S. D. Mahajan, W.-C. Law, R. Aalinkeel, J. Reynolds, B. B. Nair, K.-T. Yong, I. Roy, P. N. Prasad, and S. A. Schwartz, “Chapter three - nanoparticle-mediated targeted delivery of antiretrovirals to the brain,” in Nanomedicine (N. Düzgüneş, ed.), vol. 509 of Methods in Enzymology, pp. 41–60, Academic Press, 2012. [32] C. Biolabs, “Sta-347-in-vitro-ros-rns-assay-kit,” [33] H. Motulsky, “Graphpad prism 9 statistics guide - one-way anova,” 2022.spa
dc.rights.accessrightsinfo:eu-repo/semantics/openAccessspa
dc.subject.armarcIngeniería Biomédica
dc.subject.armarcPuntos de carbono
dc.subject.armarcCáncer
dc.subject.proposalIngeniería Biomédicaspa
dc.subject.proposalBiomedical engineeringeng
dc.subject.proposalPuntos de carbonospa
dc.subject.proposalcarbon dotseng
dc.subject.proposalCáncerspa
dc.subject.proposalCancereng
dc.type.coarhttp://purl.org/coar/resource_type/c_7a1fspa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/bachelorThesisspa
dc.type.redcolhttps://purl.org/redcol/resource_type/TPspa


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record