Mostrar el registro sencillo del ítem

dc.contributor.authorUribe-Jongbloed, Alberto
dc.contributor.authorBishop, Paul L.
dc.contributor.authorPinto, Neville G
dc.date.accessioned2023-03-30T21:22:10Z
dc.date.available2023-03-30T21:22:10Z
dc.date.issued2002
dc.identifier.issn1496-2551spa
dc.identifier.urihttps://repositorio.escuelaing.edu.co/handle/001/2229
dc.description.abstractThe effect of temperature, pH, and Na+/Ca2+ concentration on the adsorptive behavior of organophilic clay used in the solidification/stabilization of hazardous wastes was addressed. The organophilic clay used was montmorillonite type clay modified by cation exchange with a mixed tallow amine as the sorbent. The contaminants used in this work were phenol, 2-chlorophenol, aniline, and chlorobenzene. 2-Butanone (also known as methyl ethyl ketone, MEK) was initially studied, but preliminary work showed that the organophilic clay poorly sorbed it and it was not studied further. A group of isothermal tests were performed to clarify specific sorption behaviors due to temperature effects, high pH, and concentration of the cations Na+ and Ca2+. The adsorption capacity of the organophilic clay decreased as follows: chlorobenzene > 2-chlorophenol > phenol > aniline. Desorption in high pH environments was seen for phenol and 2-chlorophenol. Changes in temperature, rise in the pH, or increases in Na+/Ca2+ concentrations had no effect on the adsorption of either aniline or chlorobenzene.eng
dc.description.abstractCet article traite de l’effet de la température, du pH et de la concentration Na+/Ca2+ sur l’absorption de l’argile organophilique utilisée pour la solidification/stabilisation des déchets dangereux. L’argile organophilique utilisée était une argile du groupe de la montmorillonite, modifiée par échange cationique avec une amine mélangée de suif servant de sorbant. Les contaminants utilisés dans ce travail étaient le phénol, le 2-chlorophénol, l’aniline et le chlorobenzène. Le 2-butanone (également connu sous le nom de méthyléthylcétone) a été étudié au début, mais le travail préliminaire a démontré que l’argile organophilique l’absorbait mal et il n’a pas été étudié plus longtemps. Un groupe de tests isothermes ont été effectués de manière à comprendre les comportements de sorption spécifiques selon les effets de la température, du pH élevé et la concentration des cations Na+ et Ca2+. La capacité d’absorption de l’argile organophilique décroissait selon l’ordre suivant : chlorobenzène > 2-chlorophénol > phénol > aniline. La désorption dans les environnements à pH élevés a été remarquée pour le phénol et le 2-chlorophénol. Des changements dans la température, une augmentation du pH ou des augmentations dans les concentrations de Na+/Ca2+ n’ont eu aucun effet sur l’absorption de l’aniline ou du chlorobenzène.fra
dc.description.abstractSe abordó el efecto de la temperatura, el pH y la concentración de Na+/Ca2+ en el comportamiento de adsorción de la arcilla organofílica utilizada en la solidificación/estabilización de residuos peligrosos. La arcilla organofílica utilizada fue del tipo montmorillonita modificada por intercambio catiónico con una amina de sebo mezclada como sorbente. Los contaminantes utilizados en este trabajo fueron fenol, 2-clorofenol, anilina y clorobenceno. Inicialmente se estudió la 2-butanona (también conocida como metiletilcetona, MEK), pero los trabajos preliminares mostraron que la arcilla organófila la sorbía mal y no se siguió estudiando. Se realizó un grupo de ensayos isotérmicos para aclarar los comportamientos específicos de sorción debidos a los efectos de la temperatura, el pH elevado y la concentración de los cationes Na+ y Ca2+. La capacidad de adsorción de la arcilla organófila disminuyó de la siguiente manera: clorobenceno > 2-clorofenol > fenol > anilina. La desorción en entornos de pH elevado se observó para el fenol y el 2-clorofenol. Los cambios de temperatura, el aumento del pH o los incrementos de las concentraciones de Na+/Ca2+ no tuvieron ningún efecto sobre la adsorción ni de la anilina ni del clorobenceno.spa
dc.format.extent11 páginasspa
dc.format.mimetypeapplication/pdfspa
dc.language.isoengspa
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/spa
dc.sourcehttps://www.icevirtuallibrary.com/doi/epdf/10.1139/s02-007spa
dc.titleThe influence of pH and temperature changes on the adsorption behavior of organophilic clays used in the stabilization/solidification of hazardous wasteseng
dc.typeArtículo de revistaspa
dc.type.versioninfo:eu-repo/semantics/publishedVersionspa
oaire.accessrightshttp://purl.org/coar/access_right/c_14cbspa
oaire.versionhttp://purl.org/coar/version/c_970fb48d4fbd8a85spa
dc.contributor.researchgroupCentro de Estudios Ambientalesspa
dc.identifier.doihttps://doi.org/10.1139/s02-007
dc.identifier.eissn1496-256Xspa
dc.publisher.placeColombiaspa
dc.relation.citationendpage133spa
dc.relation.citationissue2spa
dc.relation.citationstartpage123spa
dc.relation.citationvolume1spa
dc.relation.indexedN/Aspa
dc.relation.ispartofjournalJournal of Environmental Engineering and Scienceeng
dc.relation.referencesArafat, H., Hebatpuria, V., Rho, H., Pinto, N., Bishop, P.L., and Buchanan, R. 1999. Immobilization of phenol in cement-based solidified/stabilized hazardous wastes using regenerated activated carbon: role of carbon. J. Hazard. Mater. 70: 139–1569.spa
dc.relation.referencesBoyd, S.A., and Mortland, M.M. 1988. Sorption characteristics of organic compounds on hexadecyltrimethylammonium-smectite. J. Soil Sci. Soc. Am. 52: 652–656.spa
dc.relation.referencesCadena, F. 1989. Use of tailored bentonite for selective removal of organic pollutants. J. Environ. Eng. 115: 756–767.spa
dc.relation.referencesConner, J. 1990. Chemical fixation and solidification of hazardous wastes. Van Nostrand Reinhold. New York, N.Y.spa
dc.relation.referencesDentel, S.K., Bottero, J.Y., Khatib, K., Demougeot, H., Duguet, J., and Anselm, C. 1995. Sorption of tannic acid, phenol, and 2,4,5- trichlorophenol on organo-clays. Water Res. 29(5): 1273–1280.spa
dc.relation.referencesDentel, S.K., Jamrah, A.I., and Sparkes, D. 1998. Sorption and cosorption of 1,2,4-‘trichlorobenzene and tannic acid by organo-clays. Water Res. 32: 3689–3697.spa
dc.relation.referencesEl-Nahhal, Y., Nir, S., Margulies, L., and Rubin, B. 1999. Reduction of photodegradation and volatilization of herbicides in organo-clay formulations. Appl. Clay Sci. 14: 105–119.spa
dc.relation.referencesFaschan, A., Cartledge, F., and Tittlebaum, M. 1993. Effect of calcium hydroxide and pH on organo-clay adsorption of organic compounds. J. Environ. Sci. Health, A28: 585–597.spa
dc.relation.referencesGibbons, J., and Soundararajan, R. 1988. The nature of chemical bonding between modified clay minerals and organic waste materials. Am. Lab. : 38–46.spa
dc.relation.referencesGitipour, S. 1993. The use of modified clays for treatment of organics in contaminated soils. M.S. thesis, Department of Civil and Environmental Engineering. University of Cincinnati, Cincinnati, Ohio.spa
dc.relation.referencesGrim, R.E. 1968. Clay mineralogy. McGraw Hill, New York, N.Yspa
dc.relation.referencesGuangyao, S., Shihe, X., and Boyd, S. 1996. Cosorption of organic contaminants from water by hexadecyltrimethylammonium-exchanged clays. Water Res. 30: 1483–1489.spa
dc.relation.referencesHebatpuria, V., Arafat, H., Bishop, P.L., and Pinto, N. 1999a. Leaching behavior of selected aromatics in cement-based solidification/stabilization under different leaching tests. Environ. Eng. Sci. 16: 451–464.spa
dc.relation.referencesHebatpuria, V., Arafat, H., Rho, H., Bishop, P.L., Pinto, N., and Buchanan, T. 1999b. Immobilization of phenol in cement-based solidified/stabilized hazardous wastes using regenerated activated carbon: leaching studies. J. Hazard. Mater. 70: 117–138.spa
dc.relation.referencesHomenauth, O.P., and McBride, M.B. 1994. Adsorption of aniline on layer silicate clays and organic soil. J. Soil Sci. Soc. Am. 58: 347– 354.spa
dc.relation.referencesJaynes, W.F., and Boyd, S.A. 1991. Clay mineral type and organic compounds sorption by hexadecyltrimethylammonium-exchanged clay. J. Soil Sci. Soc. Am. 55: 43–48.spa
dc.relation.referencesKramer, M.J. 2000. Azo dye sorption from wastewater streams via organophilic clay sorption. M.S. thesis, Department of Civil and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio. 97 p. plus appendices.spa
dc.relation.referencesLide, D.R.(1993) CRC handbook of chemistry and physics, 73rd ed. CRC Press, Boca Raton, FL.spa
dc.relation.referencesLo, I. 1996. Solidification/stabilization of phenolic waste using organic-clay complex. J. Environ. Eng. 122: 850–855.spa
dc.relation.referencesMontgomery, D., Sollars, C., Perry, R., Tarling, S., Barnes, P., and Henderson, E. 1991. Treatment of organic-contaminated industrial wastes using cement-based stabilization/solidification — II. Microstructural analysis of the organophilic clay as a pre-solidification adsorbent. Waste Manag. Res. 9: 113–125.spa
dc.relation.referencesPolubesova, T., Rytwo, G., and Margulies, L. 1997. Adsorption of benzyltrimethylammonium and benzyltriethylammoinium on montmorillonite: experimental studies and model calculations. Clays Clay Miner. 45: 834–841.spa
dc.relation.referencesRho, H., Arafat, H., Kountz, B., Buchanan, R., Pinto, N., and Bishop, P.L. 2001. Decomposition of hazardous organic materials in the solidification/stabilization process using catalytic activated carbon. Waste Manag. 21: 343–356.spa
dc.relation.referencesStevens, J., and Anderson, S. 1996. An FTIR study of water sorption on TMA- and TMPA-montmorillonites. Clays Clay Miner. 44: 142– 150.spa
dc.relation.referencesStevens, J., and Anderson, S. 1996. Orientation of trimethylphenylammonium (TMPA) on Wyoming montmorillonite. Clays Clay Miner. 44: 132–141.spa
dc.relation.referencesTheng, B.K. 1974. The chemistry of clay-organic reactions. Wiley, New York, N.Y.spa
dc.relation.referencesUribe, A. 2000. Solidification/stabilization of hazardous wastes using organophilic clays. M.S. thesis, Department of Civil and Environmental Engineering. University of Cincinnati. Cincinnati, Ohio. 126 p.spa
dc.relation.referencesWatts, R.J. 1998. Hazardous wastes: sources, pathways, and receptors, Wiley, New York, NY.spa
dc.relation.referencesZhao, H., Jaynes, W.F., William, F., and Vance, G. 1996. Sorption of the ionizable organic compound dicamba (3,6-dichloro-2-methoxy benzoic acid) by organo-clay. Chemosphere. 33: 2089–2100.spa
dc.relation.referencesZhao, H., and Vance, G.F. 1998. Sorption of trichloroethylene by organo-clays in the presence of humic substances. Water Res. 32: 3710–3716.spa
dc.rights.accessrightsinfo:eu-repo/semantics/closedAccessspa
dc.rights.creativecommonsAtribución-NoComercial-SinDerivadas 4.0 Internacional (CC BY-NC-ND 4.0)spa
dc.subject.armarcArcillaspa
dc.subject.armarcClayeng
dc.subject.armarcResiduos peligrososspa
dc.subject.armarcHazardous wasteseng
dc.subject.armarcEstabilización de suelosspa
dc.subject.armarcSoil stabilizationeng
dc.subject.proposalOrganophilic clayeng
dc.subject.proposalAdsorptioneng
dc.subject.proposalHazardous wasteseng
dc.subject.proposalSolidification/stabilizationeng
dc.subject.proposalIsothermeng
dc.subject.proposalArgile organophiliquefra
dc.subject.proposalDéchets dangereuxfra
dc.subject.proposalSolidification/stabilisationfra
dc.subject.proposalIsothermefra
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1spa
dc.type.contentTextspa
dc.type.driverinfo:eu-repo/semantics/articlespa
dc.type.redcolhttp://purl.org/redcol/resource_type/ARTspa


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem

https://creativecommons.org/licenses/by-nc-nd/4.0/
Excepto si se señala otra cosa, la licencia del ítem se describe como https://creativecommons.org/licenses/by-nc-nd/4.0/