Publication: Monitoreo de emociones en un aula virtual evaluación del estado emocional de los estudiantes en tiempo real
Authors
Abstract (Spanish)
Abstract (English)
Director
Advisors/Directors
Extent
Collections
Collections
References
AssemblyAI — AI models to transcribe and understand speech — assemblyai.com. https://www.assemblyai.com/?utm_source=chatgpt.com. [Accessed 08-04-2025].
EfficientNet fue lanzado junio 2019 — scribd.com. https://www.scribd.com/document/559588229/ EfficientNet-fue-lanzado-junio-2019#fullscreen=1. [Accessed 04-03-2025].
GitHub - pranjalrai-iitd/FER2013-Facial-Emotion-Recognition-: Simple CNN model for FER2013 dataset with 64.78 accuracy — github.com. https://github.com/pranjalrai-iitd/FER2013-Facial-Emotion-Recognition-.git. [Accessed 10-02-2025].
Papers with Code - AffectNet Dataset — paperswithcode.com. https://paperswithcode.com/dataset/affectnet? utm_source=chatgpt.com. [Accessed 11-02-2025].
Sound classification with YAMNet — TensorFlow Hub — tensorflow.org. https://www.tensorflow.org/hub/tutorials/yamnet. [Accessed 04-03-2025].
Khalid Al-Hammuri, Fayez Gebali, Awos Kanan, and Ilamparithi Thirumarai Chelvan. Vision transformer architecture and applications in digital health: a tutorial and survey. Visual computing for industry, biomedicine, and art, 6(1):14, 2023.
Pablo Barros, Nikhil Churamani, Egor Lakomkin, Henrique Siqueira, Alexander Sutherland, and Stefan Wermter. The omg-emotion behavior dataset. In 2018 International Joint Conference on Neural Networks (IJCNN), pages 1–7. IEEE, 2018.
M Burgess. Amazon-powered ai cameras used to detect emotions of unwitting uk train passengers. wired, 2024.
Carlos-Eduardo Casallas-Fonseca and Steven-Francisco Vargas-Aristiz´abal. Bioescenarios iv. inteligencia de enjambres: Optimizaci´on por c´umulos de part´ıculas, 2019.
Andrada-Livia Cˆırneanu, Dan Popescu, and Dragos, Iordache. New trends in emotion recognition using image analysis by neural networks, a systematic review. Sensors, 23(16):7092, 2023.
Caio Augusto Cruz da Silva and Simone Ingrid Monteiro Gama. Google cloud vision api for feelings analysis in a corporate environment.
Ossama Embarak. The Importance of Data Visualization in Business Intelligence, pages 85–124. Apress, Berkeley, CA, 2018.
Bei Fang, Xian Li, Guangxin Han, and Juhou He. Facial expression recognition in educational research from the perspective of machine learning: A systematic review. IEEE Access, 11:112060–112074, 2023.
Reza GhasemAghaei, Ali Arya, and Robert Biddle. A dashboard for affective e-learning: Data visualization for monitoring online learner emotions. In EdMedia+ Innovate Learning, pages 1536–1543. Association for the Advancement of Computing in Education (AACE), 2016.
Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for accurate object detection and semantic segmentation, 2014.
SL Happy, Anirban Dasgupta, Priyadarshi Patnaik, and Aurobinda Routray. Automated alertness and emotion detection for empathic feedback during e-learning. In 2013 IEEE Fifth International Conference on Technology for Education (t4e 2013), pages 47–50. IEEE, 2013.
Andrew G Howard. Mobilenets: Efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861, 2017.
] https://www.smashingmagazine.com/author/bartosz biskupski/. Powerful Image Analysis With Google Cloud Vision And Python — Smashing Magazine — smashingmagazine.com. https://www.smashingmagazine.com/2019/01/powerful-image-analysis-google-cloud-vision-python/?utm_source=chatgpt.com. [Accessed 08-04-2025].
Salik Ram Khanal, Prabin Sharma, Hugo Fernandes, Jo˜ao Barroso, and V´ıtor Manuel de Jesus Filipe. Performance analysis and evaluation of cloud vision emotion apis. arXiv preprint arXiv:2303.12974, 2023.
Mercedes Miranda Leon and Ram´on Toala Due˜nas. Detecci´on de emociones en discursos utilizando machine learning. 593 Digital Publisher CEIT, 9(4):72–101, 2024.
Steven R. Livingstone and Frank A. Russo. The ryerson audio-visual database of emotional speech and song (ravdess): A dynamic, multimodal set of facial and vocal expressions in north american english. PLOS ONE, 13(5):1–35, 05 2018.
Sheldon Mascarenhas and Mukul Agarwal. A comparison between vgg16, vgg19 and resnet50 architecture frameworks for image classification. In 2021 International conference on disruptive technologies for multi-disciplinary research and applications (CENTCON), volume 1, pages 96–99. IEEE, 2021.
MESD. Mexican Emotional Speech Database (MESD) — kaggle.com. https://www.kaggle.com/datasets/saurabhshahane/mexican-emotional-speech-database-mesd.
Alejandro Piedrah´ıta-Carvajal, Paula Andrea Rodr´ıguez-Mar´ın, Daniel F Terraza-Arciniegas, Mauricio AmayaG´omez, Leonardo Duque-Mu˜noz, and Juan David Mart´ınez-Vargas. Aplicaci´on web para el an´alisis de emociones y atenci´on de estudiantes. TecnoL´ogicas, 24(51):62–76, 2021.
Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified, real-time object detection, 2016.
Cynthia Nathaly Chocobar Rodr´ıguez. Neuroeducaci´on. solo se puede aprender lo que se ama. Educatio Siglo XXI, 38(2 Jul-Oct):263–268, 2020.
Adriana Stein. 6 emociones que difieren entre las diferentes culturas — lingoda.com. https://www.lingoda.com/blog/es/6-emociones-que-difieren-entre-diferentes-culturas/. [Accessed 11-02-2025].
Zouheir Trabelsi, Fady Alnajjar, Medha Mohan Ambali Parambil, Munkhjargal Gochoo, and Luqman Ali. Realtime attention monitoring system for classroom: A deep learning approach for student’s behavior recognition. Big Data and Cognitive Computing, 7(1), 2023.
Weimin Yang. Extraction and analysis of factors influencing college students’ mental health based on deep learning model. Applied Mathematics and Nonlinear Sciences, 9, 10 2023.
Qinying Yuan. Research on Classroom Emotion Recognition Algorithm Based on Visual Emotion Classification. Computational Intelligence and Neuroscience, 2022:6453499, August 2022.