Publication: On exponential convergence of generic quantum Markov semigroups in a Wasserstein-type distance
Authors
Abstract (Spanish)
Collections
References
L. Accardi, F. Fagnola and S. Hachicha, Generic q-Markov semigroups and speed of convergence of q-algorithms, Infin. Dimens. Anal. Quantum Probab. Relat. Top.9, 567 (2006).
L. Accardi, S. Kozyrev, Lectures on the qualitative analysis of quantum Markov semigroups in: Quantum interacting particle systems (Trento, 2000), L. Accardi and F. Fagnola, eds., QP–PQ: Quantum Probab. White Noise Anal. 14, World Sci. Publishing, River Edge, NJ, (2002),1195.
J. Agredo, A Wasserstein-type Distance to Measure Deviation from Equilibrium of Quantum Markov Semigroups, Open Sys. Information Dyn. 20:2,(2013), 1-20.
R. Carbone, Optimal log - Sobolev inequality and hypercontractivity for positive semigroups on M2, Inf.Dim.Anal, Quant Prob and Rel Top 7, (2004), 3-23.
R. Carbone, F. Fagnola, Exponential L2 - convergence of quantum Markov semigroups on B(h), Math. Notes 68, (2000), 452-473.
R. Carbone, F. Fagnola, S. Hachicha, Generic Quantum Markov Semigroups: the Gaussian Gauge Invariant Case, Open Sys. Information Dyn. 14, (2007), 425-445.
R. Carbone, E. Sasso, V. Umanita Decoherence for Quantum Markov Semi-Groups on Matrix Algebras, Ann.Hen. Poninc. 14 (4), (2013), 681-703.
M. Chen, From Markov Chains to Non-equilibrium Particle Systems, NJ: World Scientific (2004).
M. Chen, Estimation of spectral gap for Markov chains, Acta Math. Sin. 12 (4), (1996), 337-360
A.M. Chebotarev, F. Fagnola, Sufficient conditions for conservativity of minimal quantum dynamical semigroups, J. Funct. Anal. 153 (1998).
B. Cloez, Wasserstein decay of one dimensional jump-diffusions, arXiv:1202.1259v2
R. Dudley, Real analysis and probability, Cambridge University Press, Cambridge (2002)
F. Fagnola, R. Rebolledo, Lectures on the qualitative analysis of quantum Markov semigroups in: Quantum interacting particle systems (Trento, 2000), QPPQ: Quantum Probab. White Noise Anal. 14, World Sci. Publishing, River Edge, NJ, (2002), 197 - 239.
F. Fagnola, V. Umanit`a, Generators of detailed balance quantum Markov semigroups, Inf. Dim. Anal. Quant. Probab. Relat. Top.,10, (2007),335 - 363.
F. Fagnola, V. Umanit`a, Generators of KMS Symmetric Markov Semigroups on B(h), Symmetry and Quantum Detailed Balance, Commun. Math. Phys. ,298,(2010), 523 - 547.
F. Fagnola, R. Rebolledo, Entropy Production for Quantum Markov Semigroups. Commun. Math. Phys. 335, (2015), 547570.
F. Fagnola, R. Rebolledo, Entropy production and detailed balance for a class of quantum Markov semigroups. Open Syst. Inf. Dyn. 22, (2015), 1-14.
M. Hairer, A. Stuart and S. Vollmer, Spectral gaps for a Metropolis Hastings algorithm in infinite dimensions, The Annals Aplied Prob., 24 no. 6, Project Euclid , (2014), 2455- 2490.
A. Joulin, A new Poisson-type deviation inequality for Markov jump processes with positive Wasserstein curvature, Bernoulli 15 no. 2, (2009), 532-552.
A. Joulin, Poisson-type deviation inequalities for curved continuous-time Markov chains, Bernoulli 13 no. 3, (2007), 782-803.
Y. Ollivier, A survey of Ricci curvature for metric spaces and Markov chains, Probabilistic approach to geometry, Adv. Stud. Pure Math., 57, Math. Soc. Japan, Tokyo, (2010), 343-363.
M. Sammer, Aspects of mass transportation in discrete concentration inequalities, Ph.D. Thesis, Georgia Institute of Technology. (2005), http://smartech.gatech.edu/dspace/handle/1853/7006.
C. Villani, Topics in Optimal Transportation, Graduate Studies in Mathematics 58, American Mathematical Society, Providence (2003).
M. von Renesse, K. Sturm, Transport inequalities, gradient estimates, entropy, and Ricci curvature, Comm. Pure Appl. Math. 58 (2005), 923-944 .
F-Y. Wang, Functional inequalities for the decay of sub-Markov semigroups, Potential Anal.18 1 (2003),1-23.