Publication: Theorem Proving Modulo Based on Boolean Equational Procedures
Authors
Authors
Abstract (Spanish)
Abstract (English)
Extent
© Springer-Verlag Berlin Heidelberg 2008
Collections
Collections
References
Backhouse, R.: Program Construction: Calculating Implementations from Specifications. Willey, Chichester, UK (2003)
Barendregt, H.P., Barendsen, E.: Autarkic computations and formal proofs. Journal of Automated Reasoning 28(3), 321–336 (2002)
Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Talcott, C. (eds.): All About Maude - A High-Performance Logical Framework. LNCS, vol. 4350. Springer, Heidelberg (2007)
de Recherche en, L.: Informatique. The CiME System (2007), http://cime.lri.fr/
Dershowitz, N., Jouannaud, J.-P.: Rewrite systems. In: van Leeuwen, J. (ed.) Handbook of Theoretical Computer Science. Formal Methods and Semantics, ch. 6, vol. B, pp. 243–320. North-Holland, Amsterdam (1990)
Dijkstra, E.W., Scholten, C.S.: Predicate Calculus and Program Semantics. Springer, Heidelberg (1990)q
Dowek, G., Hardin, T., Kirchner, C.: Theorem proving modulo. J. Autom. Reasoning 31(1), 33–72 (2003)
Eker, S., Martí-Oliet, N., Meseguer, J., Verdejo, A.: Deduction, strategies, and rewriting. In: Martí-Oliet, N. (ed.) Proc. Strategies 2006, ENTCS, pp. 417–441. Elsevier, Amsterdam (2007)
Girard, J.-Y.: Proofs and Types. Cambridge Tracts in Theoretical Computer Science, vol. 7. Cambridge University Press, Cambridge (1989)
Gries, D.: A calculational proof of Andrews’s challenge. Technical Report TR96-1602, Cornell University, Computer Science (August 28, 1996)
Gries, D., Schneider, F.B.: A Logical Approach to Discrete Math. In: Texts and Monographs in Computer Science, Springer, Heidelberg (1993)
Gries, D., Schneider, F.B.: Equational propositional logic. Inf. Process. Lett. 53(3), 145–152 (1995)
Hendrix, J., Ohsaki, H., Meseguer, J.: Sufficient completeness checking with propositional tree automata. Technical Report UIUCDCS-R-2005-2635, University of Illinois Urbana-Champaign (2005)
Hsiang, J.: Topics in automated theorem proving and program generation. PhD thesis, University of Illinois at Urbana-Champaign (1982)
Jacobson, N.: Basic algebra, vol. I. W. H. Freeman and Co., San Francisco, Calif (1974)
Lifschitz, V.: On calculational proofs. Ann. Pure Appl. Logic 113(1-3), 207–224 (2001)
Łukasiewicz, J.: Aristotle’s Syllogistic, From the Standpoint of Modern Formal Logic. Oxford University Press, Oxford (1951)
Martí-Oliet, N., Meseguer, J.: Rewriting logic as a logical and semantic framework. In: Gabbay, D., Guenthner, F. (eds.) Handbook of Philosophical Logic, 2nd. edn., pp. 1–87. Kluwer Academic Publishers, 2002. First published as SRI Tech. Report SRI-CSL-93-05 (August 1993)
Meseguer, J., Thati, P.: Symbolic reachability analysis using narrowing and its application to verification of cryptographic protocols. Higher-Order and Symbolic Computation 20(1–2), 123–160 (2007)
Moss, L.S.: Syllogistic logic with complements (Draft 2007)
Rocha, C., Meseguer, J.: Five isomorphic Boolean theories and four equational decision procedures. Technical Report 2007-2818, University of Illinois at Urbana-Champaign (2007)
Rocha, C., Meseguer, J.: A rewriting decision procedure for Dijkstra-Scholten’s syllogistic logic with complements. Revista Colombiana de Computación 8(2) (2007)
Rocha, C., Meseguer, J.: Theorem proving modulo based on boolean equational procedures. Technical Report 2007-2922, University of Illinois at Urbana-Champaign (2007)
Simmons, G.F.: Introduction to topology and modern analysis. McGraw-Hill Book Co., Inc, New York (1963)
Socher-Ambrosius, R., Johann, P.: Deduction Systems. Springer, Berlin (1997)
Stehr, M.-O., Meseguer, J.: Pure type systems in rewriting logic: Specifying typed higher-order languages in a first-order logical framework. In: Owe, O., Krogdahl, S., Lyche, T. (eds.) From Object-Orientation to Formal Methods. LNCS, vol. 2635, pp. 334–375. Springer, Heidelberg (2004)
Viry, P.: Adventures in sequent calculus modulo equations. Electr. Notes Theor. Comput. Sci. 15 (1998)
Viry, P.: Equational rules for rewriting logic. Theoretical Computer Science 285, 487–517 (2002)