Publication: Effect of geometrical parameters on the performance of conventional Savonius VAWT: A review
Authors
Abstract (Spanish)
Abstract (English)
Extent
Collections
References
J.K. Casper Greenhouse Gases: Worldwide Impacts Infobase Publishing (2010) google-Books-ID: A 48H1rBVJ4C
W.K. Darkwah, B. Odum, M. Addae, D. Koomson, B. Kwakye Danso, E. Oti-Mensah, T. Asenso, B. Buanya Greenhouse effect: greenhouse gases and their impact on global warming Journal of Scientific Research and Reports, 17 (2018), pp. 1-9, 10.9734/JSRR/2017/39630
R. Tuckett Greenhouse gases third ed. Edition P. Worsfold, C. Poole, A. Townshend, M. Mir´o (Eds.), Encyclopedia of Analytical Science (third ed.), Academic Press, Oxford (2019), pp. 362-372, 10.1016/B978-0-12-409547-2.14031-4 https://www-sciencedirect-com.hemeroteca.lasalle.edu.co/science/article/pii/B9780124095472140314
K. Hille Climate Trends Continue to Break Records (Jul. 2016) (2016) http://www.nasa.gov/feature/goddard/2016/climate-trends-continue-to-break-records
M. Shen, W. Huang, M. Chen, B. Song, G. Zeng, Y. Zhang (micro)plastic crisis: un-ignorable contribution to global greenhouse gas emissions and climate change J Clean Prod, 254 (2020), p. 120138, 10.1016/j.jclepro.2020.120138 https://www-sciencedirect-com.hemeroteca.lasalle.edu.co/science/article/pii/S0959652620301852
A. Shakoor, M. Gan, H. Yin, F. He, H. Zuo, Y. Ma Influence of nitrogen fertilizer and straw returning on ch4 emission from a paddy field in chao lake basin, China Appl Ecol Environ Res, 18 (2020), pp. 1585-1600, 10.15666/aeer/1801_15851600
T. Kaupper, S. Hetz, S. Kolb, S. Yoon, M.A. Horn, A. Ho Deforestation for oil palm: impact on microbially mediated methane and nitrous oxide emissions, and soil bacterial communities Biol Fertil Soils, 56 (3) (2020), pp. 287-298, 10.1007/s00374-019-01421-3
S. Erdogan, F.F. Adedoyin, F.V. Bekun, S.A. Sarkodie Testing the transport-induced environmental Kuznets curve hypothesis: the role of air and railway transport J Air Transport Manag, 89 (2020), p. 101935, 10.1016/j.jairtraman.2020.101935
A. Baccini, S.J. Goetz, W.S. Walker, N.T. Laporte, M. Sun, D. Sulla- Menashe, J. Hackler, P.S.A. Beck, R. Dubayah, M.A. Friedl, S. Samanta, R.A. Houghton Estimated carbon dioxide emissions from tropical defor- estation improved by carbon-density maps Nat Clim Change, 2 (3) (2012), pp. 182-185, 10.1038/nclimate1354 URL https://doi-org.hemeroteca.lasalle.edu.co/10.1038/nclimate1354
N. Harris, S. Brown, S. Hagen, S. Saatchi, S. Petrova, W. Salas, M. Hansen, P. Potapov, A. Lotsch, Baseline map of carbon emissions from de- forestation in tropical regions, Science (New York, NY) 336 (Jun.). doi:10.1126/science.1217962.
U. S. E. P. Agency Greenhouse gas emissions overview of greenhouse gases (Jun. 2017) https://www.epa.gov/ghgemissions/global-greenhouse-gas
Eurostat Greenhouse gas emission statics (2017) [URL ec.europa.eu/eurostat/statisticsexplained/index.php/ Greenhouse_gas_emission_statistics]
O. US EPA Global Greenhouse Gas Emissions Data (Jan. 2016) [https://www.epa.gov/ghgemissions/ global-greenhouse-gas-emissions-data]
B. Roca Villanueva, M. Beltr´an Salvador, R. G´omez Huelgas Change climate and health Revista Cl´ınica Espan˜ola (English Edition), 219 (5) (2019), pp. 260-265, 10.1016/j.rceng.2019.02.009
B. Graham Global climate change and human health Geojournal, 26 (3) (1992), pp. 7-12, 10.1007/BF02629803 URL https://doi-org.hemeroteca.lasalle.edu.co/10.1007/BF02629803
M. Bakkenes, J.R.M. Alkemade, F. Ihle, R. Leemans, J.B. Latour Assessing effects of forecasted climate change on the diversity and distri- bution of European higher plants for 2050 Global Change Biol, 8 (4) (2002), pp. 390-407, 10.1046/j.1354-1013.2001.00467.x URL https://onlinelibrary-wiley-com.hemeroteca.lasalle.edu.co/doi/abs/10.1046/j. 1354-1013.2001.00467.x
A.T. Peterson, M.A. Ortega-Huerta, J. Bartley, V. S´anchez-Cordero, J. Sober´on, R.H. Buddemeier, D.R.B. Stockwell Future projections for Mexican faunas under global climate change scenarios Nature, 416 (6881) (2002), p. 626, 10.1038/416626a https://www-nature-com.hemeroteca.lasalle.edu.co/articles/416626a
Sea Level Change — IPCC. URL https://www.ipcc.ch/report/ar5/wg1/sea-level-change/.
I. Dincer Renewable energy and sustainable development: a crucial review Renew Sustain Energy Rev, 4 (2) (2000), pp. 157-175, 10.1016/S1364-0321(99)00011-8
The world’s most used renewable power sources (Jan. 2014). URL https://www.power-technology.com/features/featurethe-worlds-most-used-renewable-power-sources-4160168/.
Global Wind Report 2021 (Mar. 2021). URL https://gwec.net/global-wind-report-2021/.
Bloomberg Nef | Bloomberg finance L.P. URL [https://about.bnef.com/].
Renewable energy statistics 2020. URL/publications/2020/Jul/Renewable-energy-statistics-2020.
W. Tong (Ed.), Wind power generation and wind turbine design, WIT Press, Southampton ; Boston (2010) oCLC: ocn489011685
A. Rezaeiha, I. Kalkman, H. Montazeri, B. Blocken Effect of the shaft on the aerodynamic performance of urban vertical axis wind turbines Energy Convers Manag, 149 (2017), pp. 616-630, 10.1016/j.enconman.2017.07.055 http://www.sciencedirect.com.hemeroteca.lasalle.edu.co/science/article/pii/S0196890417306908
L. Battisti Relevance of icing for wind turbines L. Battisti (Ed.), Wind turbines in Cold climates: Icing impacts and mitigation Systems, Green Energy and technology, Springer International Publishing, Cham (2015), pp. 43-111, 10.1007/978-3-319-05191-8_2 URL https://doi-org.hemeroteca.lasalle.edu.co/10.1007/978-3-319-05191-8_2
D.A. Spera (Ed.), Wind turbine technology: Fundamental Concepts in Wind turbine Engineering (second ed.), ASME, Three Park Avenue New York, NY (2009), pp. 10016-15990, 10.1115/1.802601 URL http://ebooks.asmedigitalcollection.asme.org/book.aspx? bookid=271
F. Alam, S. Golde An aerodynamic study of a micro scale ver- tical Axis wind turbine Procedia Eng, 56 (2013), pp. 568-572, 10.1016/j.proeng.2013.03.161 URL http://www.sciencedirect.com.hemeroteca.lasalle.edu.co/science/article/pii/S1877705813005158
J. Twidell Renewable Energy Resources Routledge (2015), 10.4324/9781315766416 URL https://www.taylorfrancis.com/books/9781317660378
S. Kooiman, S. Tullis Response of a vertical Axis wind turbine to time varying wind conditions found within the urban environment Wind Eng, 34 (4) (2010), pp. 389-401, 10.1260/0309-524X.34.4.389 URL https://doi-org.hemeroteca.lasalle.edu.co/10.1260/0309-524X.34.4.389
T.M. Letcher (Ed.), Wind energy engineering: a handbook for onshore and offshore wind turbines, Academic Press, an imprint of Elsevier, London ; San Diego (2017) oCLC: ocn960845319
L. Chen, J. Chen, Z. Zhang Review of the Savonius rotor's blade profile and its performance J Renew Sustain Energy, 10 (1) (2018), Article 013306, 10.1063/1.5012024
J.L. Menet A double-step Savonius rotor for local production of elec- tricity: a design study Renew Energy, 29 (11) (2004), pp. 1843-1862, 10.1016/j.renene.2004.02.011
V. D'Alessandro, S. Montelpare, R. Ricci, A. Secchiaroli Unsteady Aerodynamics of a Savonius wind rotor: a new computational approach for the simulation of energy performance Energy, 35 (8) (2010), pp. 3349-3363, 10.1016/j.energy.2010.04.021
K. Kludzinska, K. Tesch, P. Doerffer Investigation of the aerodynamics of an innovative vertical-Axis wind turbine J Phys Conf, 530 (2014), p. 12007, 10.1088/1742-6596/530/1/012007
M. Torresi, F.A. De Benedittis, B. Fortunato, S.M. Campore- ale Performance and flow field evaluation of a savonius ro- tor tested in a wind tunnel Energy Proc, 45 (2014), pp. 207-216, 10.1016/j.egypro.2014.01.023
A. Banerjee, S. Roy, P. Mukherjee, U.K. Saha Unsteady Flow Anal- ysis Around an Elliptic-Bladed Savonius-Style Wind Turbine American Society of Mechanical Engineers Digital Collection (2015), 10.1115/GTINDIA2014-8141
M. Shaheen, M. El-Sayed, S. Abdallah Numerical study of two-bucket Savonius wind turbine cluster J Wind Eng Ind Aerod, 137 (2015), pp. 78-89, 10.1016/j.jweia.2014.12.002 URL https://www-sciencedirect-com.hemeroteca.lasalle.edu.co/science/article/pii/S0167610514002517
T. Zhou, D. Rempfer Numerical study of detailed flow field and perfor- mance of Savonius wind turbines Renewable energyPublisher: Elsevier Ltd (2013) URL https://doi-org.hemeroteca.lasalle.edu.co/10.1016/j.renene.2012.09.046
A. Sagharichi, M. Zamani, A. Ghasemi Effect of solidity on the perfor- mance of variable-pitch vertical axis wind turbine Energy, 161 (2018), pp. 753-775, 10.1016/j.energy.2018.07.160
E.L. Houghton, P.W. Carpenter, S.H. Collicott, D.T. Valentine Chapter 1 - basic concepts and definitions E.L. Houghton, P.W. Carpenter, S.H. Collicott, D.T. Valentine (Eds.), Aerodynamics for Engineering Students (seventh ed.), Butterworth-Heinemann (2017), pp. 1-86, 10.1016/B978-0-08-100194-3.00001-8
S.S. Johannes Rotor adapted to be driven by wind or flowing water (Jan. 1929) https://patents.google.com/patent/US1697574A/en
J.O. Ajedegba Effects of blade configuration on flow distribution and power output of a zephyr vertical axis wind turbine Thesis (Jul. 2008) URL http://ir.library.dc-uoit.ca/handle/10155/11
M.A. Kamoji, S.B. Kedare, S.V. Prabhu Experimental investigations on single stage modified Savonius rotor Appl Energy, 86 (7) (2009), pp. 1064-1073, 10.1016/j.apenergy.2008.09.019 URL http://www.sciencedirect.com.hemeroteca.lasalle.edu.co/science/article/pii/S0306261908002432
M.A. Kamoji, S.B. Kedare, S.V. Prabhu Experimental investigations on single stage, two stage and three stage conventional Savonius rotor Int J Energy Res, 32 (10) (2008), pp. 877-895, 10.1002/er.1399 URL https://onlinelibrary-wiley-com.hemeroteca.lasalle.edu.co/doi/abs/10.1002/er.1399
M. Kamoji, S. Kedare, S. Prabhu Experimental investigations on two and three stage modified savonius rotor Wind Eng, 35 (4) (2011), pp. 483-509, 10.1260/0309-524X.35.4.483 URL https://doi-org.hemeroteca.lasalle.edu.co/10.1260/0309-524X.35.4.483
A. Alexander, B. Holownia Wind tunnel tests on a savonius rotor J Wind Eng Ind Aerod, 3 (4) (1978), pp. 343-351, 10.1016/0167-6105(78)90037-5
I. Ushiyama, H. Nagai, J. Shinoda Experimentally determining the opti- mum design configuration for savonius rotors Bulletin of JSME, 29 (258) (1986), pp. 4130-4138, 10.1299/jsme1958.29.4130
N.H. Mahmoud, A.A. El-Haroun, E. Wahba, M.H. Nasef An experimen- tal study on improvement of Savonius rotor performance Alex Eng J, 51 (1) (2012), pp. 19-25, 10.1016/j.aej.2012.07.003
Z. Zhao, Y. Zheng, X. Xu, W. Liu, G. Hu Research on the improvement of the performance of savonius rotor based on numerical study (2009), pp. 1-6, 10.1109/supergen.2009.5348197
J.-H. Lee, Y.-T. Lee, H.-C. Lim Effect of twist angle on the perfor- mance of Savonius wind turbine Renew Energy, 89 (2016), pp. 231-244, 10.1016/j.renene.2015.12.012
S. Montelpare, V. D'Alessandro, A. Zoppi, R. Ricci Experimental study on a modified Savonius wind rotor for street lighting systems Analy- sis of external appendages and elements, Energy, 144 (2018), pp. 146-158, 10.1016/j.energy.2017.12.017
W.A. El-Askary, A.S. Saad, A.M. AbdelSalam, I.M. Sakr Investi- gating the performance of a twisted modified Savonius rotor J Wind Eng Ind Aerod, 182 (2018), pp. 344-355, 10.1016/j.jweia.2018.10.009
N. Fujisawa On the torque mechanism of Savonius rotors J Wind Eng Ind Aerod, 40 (3) (1992), pp. 277-292, 10.1016/0167-6105(92)90380-S http://www.sciencedirect.com.hemeroteca.lasalle.edu.co/science/article/pii/016761059290380S
J.V. Akwa, G. Alves da Silva Ju´nior, A.P. Petry Discussion on the verification of the overlap ratio influence on performance coefficients of a Savonius wind rotor using computational fluid dynamics Renew Energy, 38 (1) (2012), pp. 141-149, 10.1016/j.renene.2011.07.013
Z. Afroz, M.Q. Islam, M. Ali Aerodynamic studies on multi-bladed S- shaped vane type rotor 2nd International Conference on the Develop- ments in Renewable Energy technology, ICDRET 2012 (2012), pp. 1-3
U. Saha, S. Thotla, D. Maity Optimum design configuration of Savonius rotor through wind tunnel experiments, vol. 96 (2008), 10.1016/j.jweia.2008.03.005
M. Lates, R. Velicu CFD analysis and theoretical modelling of multiblade small savonius wind turbines I. Visa (Ed.), Sustainable Energy in the Built Environment - Steps towards nZEB, Springer Proceedings in Energy, Springer International Publishing (2014), pp. 403-415
F. Wenehenubun, A. Saputra, H. Sutanto An experimental study on the performance of savonius wind turbines related with the number of blades Energy Proc, 68 (2015), pp. 297-304, 10.1016/j.egypro.2015.03.259 http://linkinghub.elsevier.com.hemeroteca.lasalle.edu.co/retrieve/pii/S1876610215005652
J. Chen, L. Chen, L. Nie, H. Xu, Y. Mo, C. Wang Experimental study of two-stage Savonius rotors with different gap ratios and phase shift angles J Renew Sustain Energy, 8 (6) (2016), Article 063302, 10.1063/1.4966706
S. Frikha, Z. Driss, E. Ayadi, Z. Masmoudi, M.S. Abid Numerical and experimental characterization of multi-stage Savonius rotors Energy, 114 (2016), pp. 382-404, 10.1016/j.energy.2016.08.017 URL http://linkinghub.elsevier.com.hemeroteca.lasalle.edu.co/retrieve/pii/S0360544216311203
T. Hayashi, Y. Li, Y. Hara Wind tunnel tests on a different phase three- stage savonius rotor JSME Int J Ser B Fluids Therm Eng, 48 (1) (2005), pp. 9-16, 10.1299/jsmeb.48.9
P. Jaohindy, S. McTavish, F. Garde, A. Bastide An analysis of the transient forces acting on Savonius rotors with different aspect ratios Renew Energy, 55 (2013), pp. 286-295, 10.1016/j.renene.2012.12.045 URL http://www.sciencedirect.com.hemeroteca.lasalle.edu.co/science/article/pii/S0960148113000074
Z. Zhao, Y. Zheng, X. Xu, W. Liu, G. Hu Research on the improvement of the performance of savonius rotor based on numerical study 2009 International Conference on Sustainable Power Generation and Supply (2009), pp. 1-6, 10.1109/SUPERGEN.2009.5348197
A. Kianifar, M. Anbarsooz, M. Javadi Blade Curve Influences on Per- formance of Savonius Rotors: Experimental and Numerical (2010), pp. 905-911, 10.1115/FEDSM-ICNMM2010-30919
R. Sheldahl, L. Feltz, B. Blackwell Wind tunnel performance data for two- and three-bucket Savonius rotors J Energy, 2 (3) (1978), pp. 160-164, 10.2514/3.47966 http://arc.aiaa.org/doi/10.2514/3.47966
I. Al-Bahadly Building a wind turbine for rural home En- ergy for Sustainable Development, 13 (3) (2009), pp. 159-165, 10.1016/j.esd.2009.06.005 http://www.sciencedirect.com.hemeroteca.lasalle.edu.co/science/article/pii/S0973082609000489
B. Emmanuel, W. Jun Numerical study of a six-bladed savonius wind turbine J Sol Energy Eng, 133 (4) (2011), Article 044503, 10.1115/1.4004549 https://solarenergyengineering.asmedigitalcollection. asme.org/article.aspx?articleid=1458731
K.N. Morshed, M. Rahman, G. Molina, M. Ahmed Wind tunnel testing and numerical simulation on aerodynamic performance of a three-bladed Savonius wind turbine International Journal of Energy and Environmental Engineering, 4 (1) (2013), p. 18, 10.1186/2251-6832-4-18 https://doi-org.hemeroteca.lasalle.edu.co/10.1186/2251-6832-4-18
S. Sharma, R.K. Sharma Performance improvement of Savonius rotor us- ing multiple quarter blades – a CFD investigation Energy Convers Manag, 127 (2016), pp. 43-54, 10.1016/j.enconman.2016.08.087 http://www.sciencedirect.com.hemeroteca.lasalle.edu.co/science/article/pii/S0196890416307610
S. Sharma, R.K. Sharma CFD investigation to quantify the effect of layered multiple miniature blades on the performance of Savo- nius rotor Energy Convers Manag, 144 (2017), pp. 275-285, 10.1016/j.enconman.2017.04.059
Z. Mao, W. Tian Effect of the blade arc angle on the performance of a Savonius wind turbine Adv Mech Eng, 7 (5) (2015), 10.1177/1687814015584247 168781401558424 http://journals.sagepub.com.hemeroteca.lasalle.edu.co/doi/10.1177/1687814015584247
K. Kacprzak, G. Liskiewicz, K. Sobczak Numerical investigation of conventional and modified Savonius wind turbines Renew Energy, 60 (2013), pp. 578-585, 10.1016/j.renene.2013.06.009
M. Tartuferi, V. D'Alessandro, S. Montelpare, R. Ricci Enhancement of Savonius wind rotor aerodynamic performance: a computational study of new blade shapes and curtain systems Energy, 79 (2015), pp. 371-384, 10.1016/j.energy.2014.11.023
Z. Driss, O. Mlayeh, S. Driss, D. Driss, M. Maaloul, M.S. Abid Study of the bucket design effect on the turbulent flow around unconventional Savonius wind rotors Energy, 89 (2015), pp. 708-729, 10.1016/j.energy.2015.06.023
S. Roy, U.K. Saha Wind tunnel experiments of a newly developed two-bladed Savonius-style wind turbine Appl Energy, 137 (2015), pp. 117-125, 10.1016/j.apenergy.2014.10.022
V. Modi, M. Fernando, N. Roth Aerodynamics of the savonius rotor: experiments and analysis Proceedings of the 25th intersociety energy conversion engineering conference, vol. 5 (1990), pp. 213-218, 10.1109/IECEC.1990.747953
S. Roy, U.K. Saha Numerical Investigation to Assess an Optimal Blade Profile for the Drag Based Vertical Axis Wind Turbine American So- ciety of Mechanical Engineers Digital Collection (2014), 10.1115/IMECE2013-64001
C.M. Chan, H.L. Bai, D.Q. He Blade shape optimization of the Savonius wind turbine using a genetic algorithm Appl Energy, 213 (2018), pp. 148-157, 10.1016/j.apenergy.2018.01.029
M.H. Mohamed, G. Janiga, E. Pap, D. Th´evenin Optimal blade shape of a modified Savonius turbine using an obstacle shielding the returning blade Energy Convers Manag, 52 (1) (2011), pp. 236-242, 10.1016/j.enconman.2010.06.070
C.M. Chan, H.L. Bai, D.Q. He Blade shape optimization of the Savonius wind turbine using a genetic algorithm Appl Energy, 213 (2018), pp. 148-157, 10.1016/j.apenergy.2018.01.029
H. Gad, A. El-Hamid, W. El-Askary, M. Nasef A new design of savonius wind turbine: numerical study, CFD letters Int J, 6 (Dec. 2014)
W. Tian, B. Song, J.H. VanZwieten, P. Pyakurel Computational fluid dynamics prediction of a modified savonius wind turbine with novel blade shapes Energies, 8 (8) (2015), pp. 7915-7929, 10.3390/en8087915
K.S. Jeon, J.I. Jeong, J.-K. Pan, K.-W. Ryu Effects of end plates with various shapes and sizes on helical Savonius wind turbines Renew Energy, 79 (2015), pp. 167-176, 10.1016/j.renene.2014.11.035
B.D. Altan, M. Atılgan An experimental and numerical study on the improvement of the performance of Savonius wind rotor Energy Convers Manag, 49 (12) (2008), pp. 3425-3432, 10.1016/j.enconman.2008.08.021
B.D. Altan, M. Atılgan, A. Ö zdamar An experimental study on improvement of a Savonius rotor performance with curtaining Exp Therm Fluid Sci, 32 (8) (2008), pp. 1673-1678, 10.1016/j.expthermflusci.2008.06.006
H. Ersoy, S. Yalcindag An experimental study on the improvement of savonius turbine performance using flexible sails Int J Green Energy, 11 (8) (2014), pp. 796-807, 10.1080/15435075.2013.830121