Publication: Online System for Gait Parameters Estimation Using a LRF Sensor for Assistive Devices
Abstract (Spanish)
Abstract (English)
Extent
Collections
Collections
References
J. Marín, T. Blanco, J. J. Marín, A. Moreno, E. Martitegui, and J. C. Arages, “Integrating a gait analysis test in hospital rehabilitation: A service design approach,” PLoS ONE, vol. 14, no. 10, Oct. 2019, Art. no. e0224409
M. W. Whittle, “Clinical gait analysis: A review,” Human Movement Sci., vol. 15, pp. 369–387, 1996.
H. Stolze et al., “Gait analysis during treadmill and overground locomotion in children and adults,” Electroencephalogr. Clin. Neurophysiol./Electromyography Motor Control, vol. 105, no. 6, pp. 490–497, Dec. 1997
C. A. Cifuentes and A. Frizera, Human-Robot Interact. Strategies for Walker-Assisted Locomotion, vol. 115. Cham, Switzerland: Springer, 2016, [Online]. Available: http://link.springer.com/10.1007/978-3-319- 34063-
J. Casas, N. Cespedes, M. Múnera, and C. A. Cifuentes, “Human-robot interaction for rehabilitation scenarios,” in Control Systems Design of Bio-Robotics and Bio-mechatronics with Advanced Applications. Amsterdam, The Netherlands: Elsevier, 2020, pp. 1–31. [Online]. Available: https://linkinghub.elsevier.com/retrieve/pii/B9780128174630000010
S. D. S. Sierra M., M. Garzón, M. Mánera, and C. A. Cifuentes, “Human–robot–environment interaction interface for smart walker assisted gait: AGoRA walker,” Sensors, vol. 19, no. 13, p. 2897, Jun. 2019.
W. M. Scheidegger et al., “A novel multimodal cognitive interaction for walker-assisted rehabilitation therapies,” in Proc. IEEE 16th Int. Conf. Rehabil. Robot. (ICORR), Jun. 2019, pp. 905–910. [Online]. Available: https://ieeexplore.ieee.org/document/8779469/
J. Ballesteros, C. Urdiales, A. B. Martinez, and M. Tirado, “Online estimation of rollator user condition using spatiotemporal gait parameters,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Oct. 2016, pp. 3180–3185.
C. A. Cifuentes, C. Rodriguez, A. Frizera, and T. Bastos, “Sensor fusion to control a robotic walker based on upper-limbs reaction forces and gait kinematics,” in Proc. 5th IEEE RAS/EMBS Int. Conf. Biomed. Robot. Biomechatron., Aug. 2014, pp. 1098–1103.
A. Muro-de-la-Herran, B. Garcia-Zapirain, and A. Mendez-Zorrilla, “Gait analysis methods: An overview of wearable and non-wearable systems, highlighting clinical applications,” Sensors, vol. 14, no. 2, pp. 3362–3394, Feb. 2014.
A. Ferrari, P. Ginis, M. Hardegger, F. Casamassima, L. Rocchi, and L. Chiari, “A mobile Kalman-filter based solution for the real-time estimation of spatio-temporal_newline gait parameters,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 24, no. 7, pp. 764–773, Jul. 2016.
J. Rueterbories, E. G. Spaich, B. Larsen, and O. K. Andersen, “Methods for gait event detection and analysis in ambulatory systems,” Med. Eng. Phys., vol. 32, no. 6, pp. 545–552, Jul. 2010, doi: 10.1016/j.medengphy.2010.03.007.
J. Taborri, E. Palermo, S. Rossi, and P. Cappa, “Gait partitioning methods: A systematic review,” Sensors, vol. 16, pp. 1–5, Dec. 2016.
Y. Qi, C. B. Soh, E. Gunawan, K.-S. Low, and R. Thomas, “Assessment of foot trajectory for human gait phase detection using wireless ultrasonic sensor network,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 24, no. 1, pp. 88–97, Jan. 2016.
R. Caldas, M. Mundt, W. Potthast, F. Buarque de Lima Neto, and B. Markert, “A systematic review of gait analysis methods based on inertial sensors and adaptive algorithms,” Gait Posture, vol. 57, pp. 204–210, Sep. 2017.
M. D. S. Sánchez Manchola, M. J. P. Pinto Bernal, M. Munera, and C. A. Cifuentes, “Gait phase detection for lower-limb exoskeletons using foot motion data from a single inertial measurement unit in hemiparetic individuals,” Sensors, vol. 19, no. 13, p. 2988, Jul. 2019.
N.-H. Ho, P. Truong, and G.-M. Jeong, “Step-detection and adaptive step-length estimation for pedestrian dead-reckoning at various walking speeds using a smartphone,” Sensors, vol. 16, no. 9, p. 1423, Sep. 2016
M. Brodie et al., “Wearable pendant device monitoring using new wavelet-based methods shows daily life and laboratory gaits are different,” Med. Biol. Eng, vol. 54, pp. 663–674, Dec. 2016
M. Iwai et al., “The validity of spatiotemporal gait analysis using dual laser range sensors: A cross-sectional study,” Arch. Physiotherapy, vol. 9, no. 1, Dec. 2019.
S. Fudickar, C. Stolle, N. Volkening, and A. Hein, “Scanning laser rangefinders for the unobtrusive monitoring of gait parameters in unsupervised settings,” Sensors, vol. 18, no. 10, p. 3424, Oct. 2018. [Online]. Available: http://www.mdpi.com/1424-8220/18/10/3424
Hokuyo Automatic CO. Scanning Rangefinder Distance Data URG04LX-UG01 Product Details. Accessed: Feb. 3, 2020. [Online]. Available: https://www.hokuyo-aut.jp/search/single.php?serial=166
B. Bioengineering. SMART-DX|Motion Capture System. Accessed: Feb. 3, 2020. [Online]. Available: http://www.btsbioengineering.com/ products/smart-dx/
R. B. Davis, S. Õunpuu, D. Tyburski, and J. R. Gage, “A gait analysis data collection and reduction technique,” Hum. Movement Sci., vol. 10, no. 5, pp. 575–587, Oct. 1991.
N. Sekiya, H. Nagasaki, and H. F. Ito Taketo, “The invariant relationship between step length and step rate during free walking,” J. Hum. Movement Stud., vol. 30, no. 6, pp. 241–257, 1996
W. T. Latt, U.-X. Tan, K. C. Veluvolu, C. Y. Shee, and W. T. Ang, “Real-time estimation and prediction of periodic signals from attenuated and phase-shifted sensed signals,” in Proc. IEEE/ASME Int. Conf. Adv. Intell. Mechatronics, Jul. 2009, pp. 1643–1648. [Online]. Available: http://ieeexplore.ieee.org/document/5229825/
V. Bonnet, C. Mazzá, J. McCamley, and A. Cappozzo, “Use of weighted Fourier linear combiner filters to estimate lower trunk 3D orientation from gyroscope sensors data,” J. NeuroEng. Rehabil., vol. 10, no. 1, p. 29, 2013. [Online]. Available: http://jneuroengrehab.biomedcentral. com/articles/10.1186/1743-0003-10-2%9
V. Bonnet, C. Mazzà, K. McCamley, and J. A. Cappozzo, “Use of weighted Fourier linear combiner filters to gyroscope sensors data,” J. Neuroeng. Rehabil., vol. 10, no. 1, p. 29, 2013.
J. Gallego, E. Rocon, J. O. Roa, J. Moreno, and J. L. Pons, “Realtime estimation of pathological tremor parameters from gyroscope data,” Sensors, vol. 10, no. 3, pp. 2129–2149, Mar. 2010
A. F. Neto, J. A. Gallego, E. Rocon, J. L. Pons, and R. Ceres, “Extraction of user ’s navigation commands from upper body force interaction in walker assisted gait,” Biomed. Eng. OnLine, vol. 8, pp. 1–16, Oct. 2010.
J. F. Item-Glatthorn, N. C. Casartelli, and N. A. Maffiuletti, “Reproducibility of gait parameters at different surface inclinations and speeds using an instrumented treadmill system,” Gait Posture, vol. 44, pp. 259–264, Feb. 2016.
T. Pallej, M. Teixidó, M. Tresanchez, and J. Palacín, “Measuring gait using a ground laser range sensor,” Sensors, vol. 9, no. 11, pp. 9133–9146, Nov. 2009. http://www.pubmedcentral.nih.gov/ articlerender.fcgi?artid=3260635&to%ol=pmcentrez&rendertype= abstract
M. Teixidó, T. Pallejâ, M. Tresanchez, M. Nogués, and J. Palacín, “Measuring oscillating walking paths with a LIDAR,” Sensors, vol. 11, no. 5, pp. 5071–5086, May 2011.
F. Alton, L. Baldey, S. Caplan, and M. C. Morrissey, “A kinematic comparison of overground and treadmill walking,” Clin. Biomechanics, vol. 13, no. 6, pp. 434–440, Sep. 1998.