Publication: Fretting-corrosion behavior of electroless Ni-P/Ni-P-TiO2 coatings obtained on AZ91D magnesium alloy by a chromium-free process
Authors
Abstract (Spanish)
Abstract (English)
Extent
Collections
References
] B.L. Mordike, K.U. Kainer, Magnesium Alloys and their Applications, Wiley-VCH, Weinheim, 2000.
E. Ghali, W. Dietzel, K.U. Kainer, General and localized corrosion of magnesium alloys: a critical review, J. Materi. Eng. Perform. 13 (2004) 7–23, https://doi.org/ 10.1361/10599490417533.
] S. Schumann, The paths and strategies for increased magnesium applications in vehicles, Mater. Sci. Forum. 488-489 (2005) 1–9, https://doi.org/10.4028/www. scientific.net/MSF.488-489.1.
W. Huang, B. Hou, Y. Pang, Z. Zhou, Fretting wear behavior of AZ91D and AM60B magnesium alloys, Wear 260 (2006) 1173–1178, https://doi.org/10.1016/j.wear. 2005.07.023.
D. Landolt, S. Mischler, M. Stemp, Electrochemical methods in tribocorrosion: a critical appraisal, Electrochim. Acta 46 (2001) 3913–3929, https://doi.org/10. 1016/S0013-4686(01)00679-X.
R. Offoiach, M. Lekkaa, A. Lanzutti, V. Martínez-Nogués, J.M. Vega, E. GarcíaLecina, L. Fedrizzi, Tribocorrosion study of Ni/B electrodeposits with low B content, Surf. Coat. Technol. 369 (2019) 1–15, https://doi.org/10.1016/j.surfcoat.2019.04. 047
C.T. Dervos, J. Novakovic, P. Vassiliou, Electroless Ni-B and Ni-P coatings with high-fretting resistance for electrical contact applications, Proceedings of the 50th IEEE Holm Conference on Electrical Contacts and the 22nd International Conference on Electrical Contacts, Seattle, WA, USA, 2004, pp. 281–288, , https:// doi.org/10.1109/HOLM.2004.1353131.
R.B. Waterhouse, Fretting wear, Wear 100 (1984) 107–118, https://doi.org/10. 1016/0043-1648(84)90008-5.
J. Esguerra-Arce, A. Bermúdez-Castañeda, A. Esguerra-Arce, Y. Aguilar, S. Mischler, Fretting corrosion between bone and calcium phosphate-calcium titanate coatings, Wear 414-415 (2018) 366–375, https://doi.org/10.1016/j.wear.2018.08.021.
] N. Diomidis, S. Mischler, Third body effects on friction and wear during fretting of steel contacts, Tribol. Int. 44 (2011) 1452–1460, https://doi.org/10.1016/j. triboint.2011.02.013.
] S. Barril, Fretting corrosion of Ti6Al4V : contribution to the in-vitro simulation of the femoral stem-bone cement interface, PhD Thesis EPFL, 2003.
] J. Beard, The avoidance of fretting, Mater. Des. 9 (1988) 220–227, https://doi.org/ 10.1016/0261-3069(88)90034-9.
A.D. Forero López, I.L. Lehr, S.B. Saidman, Anodisation of AZ91D magnesium alloy in molybdate solution for corrosion protection, J. Alloys Compd 702 (2017) 338–345, https://doi.org/10.1016/j.jallcom.2017.01.030.
L.P. Wu, J. Zhao, Y. Xie, Z. Yang, Progress of electroplating and electroless plating on magnesium alloy, Trans. Nonferrous Met. Soc. China 20 (2010) s630–s637, https://doi.org/10.1016/S1003-6326(10)60552-3.
H. Huo, Y. Li, F. Wang, Corrosion of AZ91D magnesium alloy with a chemical conversion coating and electroless nickel layer, Corr. Sci. 46 (2004) 1467–1477, https://doi.org/10.1016/j.corsci.2003.09.023.
C.S. Lin, H.C. Lin, K.M. Lin, W.C. Lai, Formation and properties of stannate conversion coatings on AZ61 magnesium alloys, Corr. Sci. 48 (2006) 93–109, https:// doi.org/10.1016/j.corsci.2004.11.023.
E.E. Demirci, E. Arslan, K.V. Ezirmik, Ö. Baran, Y. Totik, İ. Efeoglu, Investigation of wear, corrosion and ribocorrosion properties of AZ91 Mg alloy coated by micro arc oxidation process in the different electrolyte solutions, Thin Solid Films 528 (2013) 116–122, https://doi.org/10.1016/j.tsf.2012.07.145
Ch. Zhong, F. Liu, Y. Wu, J. Le, L. Liu, M. He, J. Zhu, W. Hu, Protective diffusion coatings on magnesium alloys: a review of recent developments, J. Alloys Compd 520 (2012) 11–21, https://doi.org/10.1016/j.jallcom.2011.12.124
E. Correa, J.F. Mejía, J.G. Castaño, F. Echeverría, M. Gómez, Tribological characterization of electroless Ni-B coatings formed on commercial purity magnesium, J. Tribol. 139 (2017), https://doi.org/10.1115/1.4036169 051302-1–051302-9.
] H. Zhao, Z. Huang, J. Cui, A new method for electroless Ni–P plating on AZ31 magnesium alloy, Surf. Coat. Technol. 202 (2007) 133–139, https://doi.org/10. 1016/j.surfcoat.2007.05.001.
W.X. Zhang, J.G. He, Z.H. Jiang, Q. Jiang, J.S. Lian, Electroless Ni-P layer with a chromium-free pretreatment on AZ91D magnesium alloy, Surf. Coat. Technol. 201 (2007) 4594–4600, https://doi.org/10.1016/j.surfcoat.2006.09.312.
J. Sudagar, J. Lian, W. Sha, Electroless nickel, alloy, composite and nano coatings – A critical review, J. Alloys Compd. 571 (2013) 183–204, https://doi.org/10.1016/j. jallcom.2013.03.107
A.A. Zuleta, E. Correa, J.G. Castaño, F. Echeverria, A. Baron-Wiechec, P. Skeldon, G.E. Thompson, Study of the formation of alkaline electroless Ni-P coating on magnesium and AZ31B magnesium alloy, Surf. Coat. Technol. 321 (2017) 309–320, https://doi.org/10.1016/j.surfcoat.2017.04.059
A.A. Zuleta, E. Correa, M. Sepúlveda, L. Guerra, J.G. Castaño, F. Echeverría, P. Skeldon, G.E. Thompson, Effect of NH4HF2 on deposition of alkaline electroless Ni–P coatings as a chromium-free pre-treatment for magnesium, Corr. Sci. 55 (2012) 194–200, https://doi.org/10.1016/j.corsci.2011.10.028
M.A. Rahmat, R.N. Ibrahim, R.H. Oskouei, A stress-based approach to analyse fretting fatigue life behaviour of electroless Ni–P coated Al 7075-T6, Mat. Sci. Eng. A 631 (2015) 126–138, https://doi.org/10.1016/j.msea.2015.02.033.
K. Hari Krishnan, S. John, K.N. Srinivasan, J. Praveen, M. Ganesan, P.M. Kavimani, An overall aspect of electroless Ni-P depositions—A review article, Metall Mat Trans A 37 (2006) 1917–1926, https://doi.org/10.1007/s11661-006-0134-7.
S. Zhang, K. Han, L. Cheng, The effect of SiC particles added in electroless Ni-P plating solution on the properties of composite coatings, Surf. Coatings Technol. 202 (2008) 2807–2812, https://doi.org/10.1016/j.surfcoat.2007.10.015
P.A. Gay, J.M. Limat, P.A. Steinmann, J. Pagetti, Characterisation and mechanical properties of electroless NiP-ZrO2 coatings, Surf. Coatings Technol 202 (2007) 1167–1171, https://doi.org/10.1016/j.surfcoat.2007.05.081
] P. Gadhari, P. Sahoo, Effect of process parameters on microhardness of Ni-P-Al2O3 composite coatings, Procedia Mater. Sci. 6 (2014) 623–632, https://doi.org/10. 1016/j.mspro.2014.07.077.
] J. Novakovic, P. Vassiliou, E. Georgiza, Electrocatalytic Properties of Electroless NiP- RuO2/TiO2 Composite Coatings, Int. J. Electrochem. Sci. 8 (2013) 3615–3627.
E. Georgiza, J. Novakovic, P. Vassiliou, Characterization and corrosion resistance of duplex electroless Ni-P composite coatings on magnesium alloy, Surf. Coat. Technol. 232 (2013) 432–439, https://doi.org/10.1016/j.surfcoat.2013.05.047.
W. Chen, W. Gao, Y. He, A novel electroless plating of Ni-P-TiO2 nano-composite coatings, Surf. Coat. Technol. 204 (2010) 2493–2498, https://doi.org/10.1016/j. surfcoat.2010.01.032
J.A. Calderón, J.P. Jiménez, A.A. Zuleta, Improvement of the erosion-corrosion resistance of magnesium by electroless Ni-P/Ni(OH)2-ceramic nanoparticle composite coatings, Surf. Coat. Technol. 304 (2016) 167–178, https://doi.org/10.1016/ j.surfcoat.2016.04.063
T.R. Tamilarasan, R. Rajendran, M. Siva shankar, U. Sanjith, G. Rajagopal, J. Sudagar, Wear and scratch behaviour of electroless Ni-P-nano-TiO2: effect of surfactants, Wear 346–347 (2016) 148–157, https://doi.org/10.1016/j.wear.2015. 11.015
T.R. Tamilarasan, R. Rajendran, G. Rajagopal, J. Sudagar, Effect of surfactants on the coating properties and corrosion behaviour of Ni-P-nano-TiO2 coatings, Surf. Coatings Technol. 276 (2015) 320–326, https://doi.org/10.1016/j.surfcoat.2015. 07.008
] N. Promphet, P. Rattanawaleedirojn, N. Rodthongkum, Electroless NiP-TiOsol-RGO: a smart coating for enhanced corrosion resistance and conductivity of steel, Surf. Coatings Technol. 325 (2017) 604–610, https://doi.org/10.1016/j.surfcoat.2017. 07.018.
] M. Sabzi, S.H. Mousavi Anijdan, Microstructural analysis and optical properties evaluation of sol-gel heterostructured NiO-TiO2 film used for solar panels, Ceram. Int. 45 (2019) 3250–3255, https://doi.org/10.1016/j.ceramint.2018.10.229
D.F. Carrillo, A.C. Santa, A. Valencia-Escobar, A. Zapata, F. Echeverría, M.A. Gómez, A.A. Zuleta, J.G. Castaño, Tribological behavior of electroless Ni–P/ Ni–P–TiO2 coatings obtained on AZ91D magnesium alloy by a chromium-free process, Int. J. Adv. Manuf. Technol. 1-4 (2019) 1745–1756, https://doi.org/10. 1007/s00170-019-04381-y.
P. Gadhari, P. Sahoo, Optimization of Coating Process Parameters to Improve Microhardness of Ni-P-TiO2 Composite Coatings, Mater. Today Proc. 2 (2015) 2367–2374, https://doi.org/10.1016/j.matpr.2015.07.303
P. Gadhari, P. Sahoo, Study of wear behavior of Ni-P-TiO2 composite coatings by optimizing coating parameters, Mater. Today Proc. 4 (2017) 1883–1892, https:// doi.org/10.1016/j.matpr.2017.02.033
P. Makkar, R.C. Agarwala, V. Agarwala, Wear characteristics of mechanically milled TiO2 nanoparticles incorporated in electroless Ni-P coatings, Adv. Powder Technol. 25 (2014) 1653–1660, https://doi.org/10.1016/j.apt.2014.05.018
I. Saravanan, A. Elayaperumal, A. Devaraju, M. Karthikeyan, A. Raji, Wear behaviour of electroless Ni-P and Ni-P-TiO2 composite coatings on En8 steel, Mater. Today Proc. 22 (2020) 1135–1139, https://doi.org/10.1016/j.matpr.2019.12.007.
X. Wu, J. Mao, Z. Zhang, Y. Che, Improving the properties of 211Z Al alloy by enhanced electroless Ni-P-TiO2 nanocomposite coatings with TiO2 sol, Surf. Coatings Technol. 270 (2015) 170–174, https://doi.org/10.1016/j.surfcoat.2015. 03.006
L. Shizhuo, J. Xiaoxia, B. Hongyun, L. Shu, Effect of environmental embrittlement on wear resistance of alloys in corrosive wear, Wear 225-229 (1999) 1025–1030, https://doi.org/10.1016/S0043-1648(99)00079-4.
S. Barril, N. Debaud, S. Mischler, D. Landolt, A tribo-electrochemical apparatus for in vitro investigation of fretting-corrosion of metallic implant materials, Wear 252 (2002) 744–754, https://doi.org/10.1016/S0043-1648(02)00027-3.
V. Chaudhry, V. Kailas, Elastic-Plastic Contact Conditions for Frictionally Constrained Bodies Under Cyclic Tangential Loading, J. Tribol. 136 (2013), https:// doi.org/10.1115/1.4025600 011401-1–011401-17.
S. Fouvry, P. Kapsa, L. Vincent, An Elastic-plastic shakedown analysis of fretting wear, Wear 247 (2001) 41–54, https://doi.org/10.1016/S0043-1648(00)00508-1.
J.N. Balaraju, Kalavati, K.S. Rajam, Influence of particle size on the microstructure, hardness and corrosion resistance of electroless Ni-P-Al2O3 composite coatings, Surf. Coatings Technol. 200 (2006) 3933–3941, https://doi.org/10.1016/j.surfcoat. 2005.03.007
P. Makkar, R.C. Agarwala, V. Agarwala, Chemical synthesis of TiO2 nanoparticles and their inclusion in Ni-P electroless coatings, Ceram. Int. 39 (2013) 9003–9008, https://doi.org/10.1016/j.ceramint.2013.04.101.
S.R. Pearson, P.H. Shipway, Is the wear coefficient dependent upon slip amplitude in fretting? Vingsbo and Söderberg revisited, Wear 330–331 (2015) 93–102, https://doi.org/10.1016/j.wear.2014.11.005.
S. Ranganatha, T.V. Venkatesha, K. Vathsala, Development of electroless Ni-Zn-P/ nano-TiO2 composite coatings and their properties, Applied Surface Science 256 (2010) 7377–7383, https://doi.org/10.1016/j.apsusc.2010.05.076.