Publication: Serious Game Controlled by a Human-Computer Interface for Upper Limb Motor Rehabilitation: A Feasibility Study
Abstract (Spanish)
Abstract (English)
Editors
Extent
Collections
Collections
References
Vargas, G., et al.: On behalf of Observatorio Nacional de Salud - Colombia: Carga de enfermedad por enfermedades cr´onicas, no transmisibles y discapacidad en Colombia. MinSalud (2015)
Benjamin, E.J., et al.: Heart Disease and Stroke Statistics - 2018 Update. Circulation, New York (2018)
Johnson, N.N., et al.: Combined rTMS and virtual reality brain-computer interface training for motor recovery after stroke. J. Neural Eng. 15(1), 016009 (2018)
Frolov, A.A., et al.: Post-stroke rehabilitation training with a motor-imagery-based brain-computer interface (BCI)-controlled hand exoskeleton: a randomized controlled multicenter trial. Front. Neurosci. 11, 400–411 (2017)
Li, M., et al.: Neurophysiological substrates of stroke patients with motor imagerybased brain-computer interface training. Int. J. Neurosci. 124(6), 403–415 (2014)
Ib´a˜nez, J., et al.: Low latency estimation of motor intentions to assist reaching movements along multiple sessions in chronic stroke patients: a feasibility study. Front. Neurosci. 11, 126 (2017)
Mrachacz-Kersting, N., et al.: Efficient neuroplasticity induction in chronic stroke patients by an associative brain-computer interface. J. Neurophysiol. 115(3), 1410– 1421 (2016)
Marquez-Chin, C., Marquis, A., Popovic, M.R.: BCI-triggered functional electrical stimulation therapy for upper limb. Eur. J. Transl. Myol. 26(3), 6222 (2016)
Ono, T., et al.: Brain-computer interface with somatosensory feedback improves functional recovery from severe hemiplegia due to chronic stroke. Front. Neuroeng. 7, 19 (2014)
Young, B.M., et al.: Changes in functional connectivity correlate with behavioral gains in stroke patients after therapy using a brain-computer interface device. Front. Neuroeng. 7, 25 (2014)
Foldes, S.T., Weber, D.J., Collinger, J.L.: MEG-based neurofeedback for hand rehabilitation. J. Neuroeng. Rehabil. 12, 85–93 (2015)
Pulido, S.D., L´opez, J.M.: Brain-computer interface based on detection of movement intention as a means of brain wave modulation enhancement. In: 13th International Symposium on Medical Information Processing and Analysis. Proceedings of SPIE, San Andr´es, Colombia (2017)
Mrachacz-Kersting, N.: Efficient neuroplasticity induction in chronic stroke patients by an associative brain-computer interface. J. Neurophysiol. 115(3), 1410– 1421 (2016)
Bishop, C.M.: Pattern Recognition and Machine Learning. Oxford University Press, Oxford (2006)
Charness, A.: Stroke/Head Injury: A Guide to Functional Outcomes in Physical Therapy Management, 1st edn. Aspen Systems Corporation, Chicago (1986)
Kommalapati, R., Michmizos, K.P.: Virtual reality for pediatric neurorehabilitation: adaptive visual feedback of movement to engage the mirror neuron system. In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Orlando, FL, USA, pp. 5849–5852 (2016)
Berm´udez i Badia, S., Fluet, G.G., Llorens, R., Deutsch, J.E.: Virtual reality for sensorimotor rehabilitation post stroke: design principles and evidence. In: Reinkensmeyer, D.J., Dietz, V. (eds.) Neurorehabilitation Technology, pp. 573– 603. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-28603-7 28
Monteiro-Junior, R., Vaghetti, C.O., Nascimento, O.J., Laks, J., Deslandes, A.: Exergames: neuroplastic hypothesis about cognitive improvement and biological effects on physical function of institutionalized older persons. Neural Regen. Res. 11(2), 201 (2016)
Nikolaidis, A., Voss, M.W., Lee, H., Vo, L.T.K., Kramer, A.F.: Parietal plasticity after training with a complex video game is associated with individual differences in improvements in an untrained working memory task. Front. Hum. Neurosci. 8, 169 (2014)