Publication: The state of knowledge on technologies and their use for fall detection: A scoping review
Authors
Abstract (Spanish)
Abstract (English)
Extent
Collections
Collections
References
World Health Organization, World Report on Ageing and Health, World Health Organization, Geneva, 2015.
WHO Global Report on Falls Prevention in Older Age, World Health Organization, Geneva, 2008
Agence De Santé Publique Du Canada, Chutes Chez Les aînés Au Canada: Deuxième Rapport, (2014) (Accessed April 26, 2015), http://epe.lac-bac.gc.ca/ 100/201/301/liste_hebdomadaire/2014/electronique/w14-36-U-F.html/ collections/collection_2014/aspc-phac/HP25-1-2014-fra.pdf.
F. Bloch, Les complications non traumatiques des chutes: des conséquences trop souvent négligées chez la personne âgée, NPG Neurol, NPG Neurol. – Psychiatr. – Gériatrie. 15 (2015) 188–190, http://dx.doi.org/10.1016/j.npg.2015.02.001.
J. Fleming, C. Brayne, Collaboration and the Cambridge city over-75 s Cohort study, Inability to get up after falling, subsequent time on floor, and summoning help: prospective cohort study in people over 90, BMJ 337 (2008), http://dx.doi. org/10.1136/bmj.a2227 a2227–a2227
M.C. Faes, M.F. Reelick, L.W. Joosten-Weyn Banningh, M. Gier, R.A. Esselink, M.G. Olde Rikkert, Qualitative study on the impact of falling in frail older persons and family caregivers: foundations for an intervention to prevent falls, Aging Ment. Health 14 (2010) 834–842, http://dx.doi.org/10.1080/ 13607861003781825.
M. Kuzuya, Y. Masuda, Y. Hirakawa, M. Iwata, H. Enoki, J. Hasegawa, S. Izawa, A. Iguchi, Falls of the elderly are associated with burden of caregivers in the community, Int. J. Geriatr. Psychiatry 21 (2006) 740–745, http://dx.doi.org/10. 1002/gps.1554.
S.H. Zarit, K.E. Reever, J. Bach-Peterson, Relatives of the impaired elderly: correlates of feelings of burden, Gerontologist 20 (1980) 649–655, http://dx.doi.org/ 10.1093/geront/20.6.649.
Lapierre C. Proulx Goulet, A. St-Arnaud, F. Ducharme, J. Meunier, S. Turgeon Londei, J. Saint-Arnaud, F. Giroux, J. Rousseau, Perception et réceptivité des proches-aidants à l’égard de la vidéosurveillance intelligente pour la détection des chutes des aînés à domicile, Can. J. Aging 34 (2015) 445–456, http://dx.doi.org/ 10.1017/S0714980815000392
M.E. Tinetti, W.-L. Liu, E.B. Claus, Predictors and prognosis of inability to get up after falls among elderly persons, JAMA 269 (1993) 65–70.
S.T.M. Peek, K.G. Luijkx, M.D. Rijnaard, M.E. Nieboer, C.S. van der Voort, S. Aarts, J. van Hoof, H.J.M. Vrijhoef, E.J.M. Wouters, Older adults’ reasons for using technology while aging in place, Gerontology 62 (2015) 226–237, http://dx.doi. org/10.1159/000430949.
J.L. Wiles, A. Leibing, N. Guberman, J. Reeve, R.E.S. Allen, The meaning of aging in place to older people, Gerontologist 52 (2012) 357–366, http://dx.doi.org/10. 1093/geront/gnr098.
T.G. Thompson, D.J. Brailer, The Decade of Health Information Technology: Delivering Consumer-centric and Information-rich Health Care, (2004) Washington D.C. (Accessed September 20, 2017) http://www.providersedge.com/ ehdocs/ehr_articles/the_decade_of_hit-delivering_customer-centric_and_info-rich_ hc.pdf.
M. Mubashir, L. Shao, L. Seed, A survey on fall detection: principles and approaches, Neurocomputing 100 (2013) 144–152, http://dx.doi.org/10.1016/j. neucom.2011.09.037.
X. Yu, Approaches and Principles of Fall Detection for Elderly and Patient, 10th Int. Conf. E-Health Netw. Appl. Serv. 2008 Heal. 2008, 2008, pp. 42–47, , http:// dx.doi.org/10.1109/HEALTH.2008.4600107.
H. Hawley-Hague, E. Boulton, A. Hall, K. Pfeiffer, C. Todd, Older adults’ perceptions of technologies aimed at falls prevention, detection or monitoring: a systematic review, Int. J. Med. Inf. 83 (2014) 416–426, http://dx.doi.org/10.1016/j. ijmedinf.2014.03.002 (11p).
J. Van Hoof, H.S.M. Kort, P.G.S. Rutten, M.S.H. Duijnstee, Ageing-in-place with the use of ambient intelligence technology: perspectives of older users, Int. J. Med. Inf. 80 (2011) 310–331, http://dx.doi.org/10.1016/j.ijmedinf.2011.02.010.
O.A. Atoyebi, A. Stewart, J. Sampson, Use of information technology for falls detection and prevention in the elderly, Ageing Int. 40 (2015) 277–299, http://dx. doi.org/10.1007/s12126-014-9204-0.
Y. Delahoz, M. Labrador, Survey on fall detection and fall prevention using wearable and external sensors, Sensors 14 (2014) 19806–19842, http://dx.doi. org/10.3390/s141019806.
N. Pannurat, S. Thiemjarus, E. Nantajeewarawat, Automatic fall monitoring: a review, Sensors 14 (2014) 12900–12936, http://dx.doi.org/10.3390/ s140712900
M. Habib, M. Mohktar, S. Kamaruzzaman, K. Lim, T. Pin, F. Ibrahim, Smartphonebased solutions for fall detection and prevention: challenges and open issues, Sensors 14 (2014) 7181–7208, http://dx.doi.org/10.3390/s140407181.
L. Schwickert, C. Becker, U. Lindemann, C. Marechal, A. Bourke, L. Chiari, J.L. Helbostad, W. Zijlstra, K. Aminian, C. Todd, S. Bandinelli, J. Klenk, F. Consortium, F.M.D.C.G. the, Fall detection with body-worn sensors: a systematic review, Z. Gerontol. Geriatr. 46 (2013) 706–719, http://dx.doi.org/10. 1007/s00391-013-0559-8.
F.J.S. Thilo, B. Hürlimann, S. Hahn, S. Bilger, J.M.G.A. Schols, R.J.G. Halfens, F.J. Thilo, J.M. Schols, R.J. Halfens, Involvement of older people in the development of fall detection systems: a scoping review, BMC Geriatr. 16 (2016) 1–9, http://dx.doi.org/10.1186/s12877-016-0216-3 (9p).
J. Sree Madhubala, A. Umamakeswari, B. Jenita Amali Rani, A survey on technical approaches in fall detection system, Natl. J. Physiol. Pharm. Pharmacol. 5 (2015) 275–279, http://dx.doi.org/10.5455/njppp.2015.5.0506201550.
H.M. Daudt, C. Van Mossel, S.J. Scott, Enhancing the scoping study methodology: a large, inter-professional team’s experience with Arksey and O’Malley’s framework, BMC Med. Res. Methodol. 13 (2013) 48.
H. Arksey, L. O’Malley, Scoping studies: towards a methodological framework, Int. J. Soc. Res. Methodol. 8 (2005) 19–32, http://dx.doi.org/10.1080/ 1364557032000119616.
Clarivate Analytics, EndNote, (2013) http://endnote.com/?_ga=2.96196956. 1537624838.1494342290-391085266.1490793223.
] Technology Readiness Assessment Guide, US Department of Energy, Washington D.C, 1992.
Elsevier B.V, Scopus, (n.d.). https://www.scopus.com/sources.uri?zone= TopNavBar&origin=searchbasic.(Accessed December 29, 2016).
S.C. Imago, SCI mago journal & country rank: un Nuevo porta dos nuevos rankings, EL Prof. Inf. 16 (2007) 645–646.
C.G. Maher, A.M. Moseley, C. Sherrington, M.R. Elkins, R.D. Herbert, A description of the trials, reviews, and practice guidelines indexed in the PEDro database, Phys. Ther. (2008) (Accessed December 29, 2016), http://ptjournal.apta.org/content/ early/2008/07/17/ptj.20080002.short.
D. Law, N. Stewart, L. Pollock, J. Letts, Guidelines for Critical Review FormQuantitative Studies, McMaster Univ. Occup. Ther. Evid.-Based Pract. Res. Group, (1998).
L. Letts, S. Wilkins, M. Law, D. Stewart, J. Bosch, M. Westmorland, Guidelines for critical review form: qualitative studies (Version 2.0), McMaster Univ. Occup. Ther. Evid.-Based Pract. Res. Group, (2007) (Accessed December 29, 2016), https://www.canchild.ca/system/tenon/assets/attachments/000/000/360/ original/qualguide.pdf
A. Liberati, D.G. Altman, J. Tetzlaff, C. Mulrow, P.C. Gøtzsche, J.P.A. Ioannidis, M. Clarke, P.J. Devereaux, J. Kleijnen, D. Moher, The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration, PLoS Med. 6 (2009) e1000100, http:// dx.doi.org/10.1371/journal.pmed.1000100.
M.V. Albert, K. Kording, M. Herrmann, A. Jayaraman, Fall classification by machine learning using mobile phones, PLoS One 7 (2012) e36556, http://dx.doi. org/10.1371/journal.pone.0036556.
A. Ariani, S.J. Redmond, D. Chang, N.H. Lovell, Simulated unobtrusive falls detection with multiple persons, IEEE Trans. Biomed. Eng. 59 (2012) 3185–3196, http://dx.doi.org/10.1109/TBME.2012.2209645.
E. Auvinet, F. Multon, A. St-Arnaud, J. Rousseau, J. Meunier, Fall detection with multiple cameras: an occlusion-resistant method based on 3D silhouette vertical distribution, IEEE Trans. Inf. Technol. Biomed. 15 (2011) 290–300, http://dx.doi. org/10.1109/TITB.2010.2087385.
F. Bagala, C. Becker, A. Cappello, L. Chiari, K. Aminian, J.M. Hausdorff, W. Zijlstra, J. Klenk, Evaluation of accelerometer-based fall detection algorithms on real-world falls, PLoS One 7 (2012) e37062, http://dx.doi.org/10.1371/ journal.pone.0037062.
Z.P. Bian, J. Hou, L.P. Chau, N. Magnenat-Thalmann, Fall detection based on body part tracking using a depth camera, IEEE J. Biomed. Health Inform. 19 (2015) 430–439, http://dx.doi.org/10.1109/JBHI.2014.2319372.
F. Bianchi, S.J. Redmond, M.R. Narayanan, S. Cerutti, N.H. Lovell, Barometric pressure and triaxial accelerometry-based falls event detection, IEEE Trans. Neural Syst. Rehabil. Eng. 18 (2010) 619–627, http://dx.doi.org/10.1109/TNSRE.2010. 2070807
F. Bloch, V. Gautier, N. Noury, J.E. Lundy, J. Poujaud, Y.E. Claessens, A.S. Rigaud, Evaluation under real-life conditions of a stand-alone fall detector for the elderly subjects, Ann. Phys. Rehabil. Med. 54 (2011) 391–398, http://dx.doi.org/10. 1016/j.rehab.2011.07.962.
P. Boissy, S. Choquette, M. Hamel, N. Noury, User-based motion sensing and fuzzy logic for automated fall detection in older adults, Telemed. J. E Health 13 (2007) 683–693.
S. Bouakaz, M. Vacher, M.E. Bobillier Chaumon, F. Aman, S. Bekkadja, F. Portet, E. Guillou, S. Rossato, E. Desseree, P. Traineau, J.P. Vimont, T. Chevalier, CIRDO, Smart companion for helping elderly to live at home for longer, Irbm 35 (2014) 100–108, http://dx.doi.org/10.1016/j.irbm.2014.02.011.
W. Bourennane, Y. Charlon, F. Bettahar, E. Campo, D. Esteve, Homecare monitoring system: a technical proposal for the safety of the elderly experimented in an Alzheimer’s care unit, Irbm 34 (2013) 92–100, http://dx.doi.org/10.1016/j.irbm. 2013.02.002.
A.K. Bourke, G.M. Lyons, A threshold-based fall-detection algorithm using a biaxial gyroscope sensor, Med. Eng. Phys. 30 (2008) 84–90.
] A.K. Bourke, J.V. O’Brien, G.M. Lyons, Evaluation of a threshold-based tri-axial accelerometer fall detection algorithm, Gait Posture 26 (2007) 194–199.
A.K. Bourke, K.J. O’Donovan, O.L.G, The identification of vertical velocity profiles using an inertial sensor to investigate pre-impact detection of falls, Med. Eng. Phys. 30 (2008) 937–946, http://dx.doi.org/10.1016/j.medengphy.2007.12.003.
M.E. Bowen, J. Craighead, C.A. Wingrave, W.D. Kearns, Real-time locating systems (RTLS) to improve fall detection, Gerontechnology 9 (2010) 464–471, http://dx. doi.org/10.4017/gt.2010.09.04.005.00.
E. Broadbent, R. Tamagawa, A. Patience, B. Knock, N. Kerse, K. Day, B. MacDonald A, Attitudes towards health-care robots in a retirement village, Australas, J. Ageing 31 (2012) 115–120, http://dx.doi.org/10.1111/j.1741-6612.2011. 00551.x.
D. Brulin, Y. Benezeth, E. Courtial, Posture recognition based on fuzzy logic for home monitoring of the elderly, IEEE Trans. Inf. Technol. Biomed. 16 (2012) 974–982
Y. Charlon, W. Bourennane, F. Bettahar, E. Campo, Activity monitoring system for elderly in a context of smart home, Irbm 34 (2013) 60–63, http://dx.doi.org/10.1016/j.irbm.2012.12.014.
A. Dasios, D. Gavalas, G. Pantziou, C. Konstantopoulos, Hands-on experiences in deploying cost-effective ambient-assisted living systems, Sensors 15 (2015) 14487–14512, http://dx.doi.org/10.3390/s150614487.
F. De Backere, F. Ongenae, F. Van den Abeele, J. Nelis, P. Bonte, E. Clement, M. Philpott, J. Hoebeke, S. Verstichel, A. Ackaert, F. De Turck, Towards a social and context-aware multi-sensor fall detection and risk assessment platform, Comput. Biol. Med. 64 (2015) 307–320, http://dx.doi.org/10.1016/j. compbiomed.2014.12.002.
C.N. Doukas, I. Maglogiannis, Emergency fall incidents detection in assisted living environments utilizing motion, sound, and visual perceptual components, IEEE Trans. Inf. Technol. Biomed. 15 (2011) 277–289, http://dx.doi.org/10.1109/ TITB.2010.2091140.
E. Dovgan, M. Lustrek, B. Pogorelc, A. Gradisek, H. Burger, M. Gams, Intelligent elderly-care prototype for fall and disease detection, Zdr. Vestn. 80 (2011) 824–831.
M.A. Estudillo-Valderrama, L.M. Roa, J. Reina-Tosina, D. Naranjo-Hernandez, Design and implementation of a distributed fall detection system–personal server, IEEE Trans. Inf. Technol. Biomed. 13 (2009) 874–881, http://dx.doi.org/10.1109/ TITB.2009.2031316.
F. Feldwieser, M. Gietzelt, M. Goevercin, M. Marschollek, M. Meis, S. Winkelbach, K.H. Wolf, J. Spehr, E. Steinhagen-Thiessen, Multimodal sensor-based fall detection within the domestic environment of elderly people, Z. Gerontol. Geriatr. 47 (2014) 661–664, http://dx.doi.org/10.1007/s00391-014-0805-8.
F. Felisberto, F. Fdez-Riverola, A. Pereira, A ubiquitous and low-cost solution for movement monitoring and accident detection based on sensor fusion, Sensors 14 (2014) 8961–8983, http://dx.doi.org/10.3390/s140508961.
C. Garripoli, M. Mercuri, P. Karsmakers, P. Jack Soh, G. Crupi, G.A. Vandenbosch, C. Pace, P. Leroux, D. Schreurs, Embedded DSP-based telehealth radar system for remote in-door fall detection, IEEE J. Biomed. Health Inform. 19 (2015) 92–101, http://dx.doi.org/10.1109/JBHI.2014.2361252
M. Gietzelt, J. Spehr, Y. Ehmen, S. Wegel, F. Feldwieser, M. Meis, M. Marschollek, K.H. Wolf, E. Steinhagen-Thiessen, M. Gövercin, GAL@Home: a feasibility study of sensor-based in-home fall detection, Z. Für Gerontol. Geriatr. 45 (2012) 716–721, http://dx.doi.org/10.1007/s00391-012-0400-9.
] K. Horton, Falls in older people: the place of telemonitoring in rehabilitation, J. Rehabil. Res. Dev. 45 (2008) 1183–1194.
C.N. Huang, C.T. Chan, A ZigBee-based location-aware fall detection system for improving elderly telecare, Int. J. Environ. Res. Public Health Electron. Resour. 11 (2014) 4233–4248, http://dx.doi.org/10.3390/ijerph110404233.
C.N. Huang, C.Y. Chiang, G.C. Chen, S.J. Hsu, W.C. Chu, C.T. Chan, Fall detection system for healthcare quality improvement in residential care facilities, J. Med. Biol. Eng. 30 (2010) 247–252.
D. Istrate, M. Binet, S. Cheng, Real time sound analysis for medical remote monitoring, Conf. Proc. IEEE Eng. Med. Biol. Soc. 2008 (2008) 4640–4643, http://dx. doi.org/10.1109/IEMBS.2008.4650247.
L.H. Juang, M.N. Wu, Fall down detection under smart home system, J. Med. Syst. 39 (2015) 107, http://dx.doi.org/10.1007/s10916-015-0286-3.
D.W. Kang, J.S. Choi, J.W. Lee, S.C. Chung, S.J. Park, G.R. Tack, Real-time elderly activity monitoring system based on a tri-axial accelerometer, Disabil. Rehabil. Assist. Technol. 5 (2010) 247–253, http://dx.doi.org/10.3109/ 17483101003718112.
M. Kangas, A. Konttila, P. Lindgren, I. Winblad, T. Jamsa, Comparison of lowcomplexity fall detection algorithms for body attached accelerometers, Gait Posture 28 (2008) 285–291, http://dx.doi.org/10.1016/j.gaitpost.2008.01.003.
M. Kangas, R. Korpelainen, I. Vikman, L. Nyberg, T. Jämsä, Sensitivity and false alarm rate of a fall sensor in long-term fall detection in the elderly, Gerontology 61 (2015) 61–68, http://dx.doi.org/10.1159/000362720 (8p).
M. Kangas, I. Vikman, J. Wiklander, P. Lindgren, L. Nyberg, T. Jämsä, Sensitivity and specificity of fall detection in people aged 40 years and over, Gait Posture 29 (2009) 571–574, http://dx.doi.org/10.1016/j.gaitpost.2008.12.008 (4p).
L.J. Kau, C.S. Chen, A smart phone-based pocket fall accident detection, positioning, and rescue system, IEEE J. Biomed. Health Inform. 19 (2015) 44–56, http://dx.doi.org/10.1109/JBHI.2014.2328593.
Z.A. Khan, W. Sohn, A model for abnormal activity recognition and alert generation system for elderly care by hidden conditional random fields using Rtransform and generalized discriminant analysis features, Telemed. J. E Health 18 (2012) 641–647, http://dx.doi.org/10.1089/tmj.2011.0268.
K. Koloszar, Understanding expectations of different user groups of a sophisticated fall detection system, Int. J. Occup. Saf. Ergon. 20 (2014) 227–238.
B. Kwolek, M. Kepski, Human fall detection on embedded platform using depth maps and wireless accelerometer, Comput. Methods Programs Biomed. 117 (2014) 489–501, http://dx.doi.org/10.1016/j.cmpb.2014.09.005.
B. Kwolek, M. Kepski, Improving fall detection by the use of depth sensor and accelerometer, Neurocomputing 168 (2015) 637–645, http://dx.doi.org/10.1016/ j.neucom.2015.05.061.
N. Lapierre, I. Carpentier, A. St-Arnaud, F. Ducharme, J. Meunier, M. Jobidon, J. Rousseau, Intelligent videosurveillance and falls detection: perceptions of professionals and managers, Can. J. Occup. Ther. – Rev. Can. Ergother. 83 (2016) 33–41, http://dx.doi.org/10.1177/0008417415580431.
J.K. Lee, S.N. Robinovitch, E.J. Park, Inertial sensing-based pre-impact detection of falls involving near-fall scenarios, IEEE Trans. Neural Syst. Rehabil. Eng. 23 (2015) 258–266, http://dx.doi.org/10.1109/TNSRE.2014.2357806
A. Leone, G. Diraco, P. Siciliano, Detecting falls with 3D range camera in ambient assisted living applications: a preliminary study, Med. Eng. Phys. 33 (2011) 770–781, http://dx.doi.org/10.1016/j.medengphy.2011.02.001.
Y. Li, K.C. Ho, M. Popescu, A microphone array system for automatic fall detection, IEEE Trans. Biomed. Eng. 59 (2012) 1291–1301, http://dx.doi.org/10.1109/ TBME.2012.2186449.
Y. Li, K.C. Ho, M. Popescu, Efficient source separation algorithms for acoustic fall detection using a microsoft kinect, IEEE Trans. Biomed. Eng. 61 (2014) 745–755, http://dx.doi.org/10.1109/TBME.2013.2288783.
L.A. Lipsitz, A.E. Tchalla, I. Iloputaife, M. Gagnon, K. Dole, Z.Z. Su, L. Klickstein, Evaluation of an automated falls detection device in nursing home residents, J. Am. Geriatr. Soc. 64 (2016) 365–368, http://dx.doi.org/10.1111/jgs.13708.
J. Liu, T.E. Lockhart, Automatic individual calibration in fall detection – an integrative ambulatory measurement framework, Comput. Methods Biomech. Biomed. Engin. 16 (2013) 504–510, http://dx.doi.org/10.1080/10255842.2011. 627329.
J. Liu, T.E. Lockhart, Trunk angular kinematics during slip-induced backward falls and activities of daily living, J. Biomech. Eng. 136 (2014) 101005, http://dx.doi. org/10.1115/1.4028033.
J. Liu, T.E. Lockhart, Development and evaluation of a prior-to-impact fall event detection algorithm, IEEE Trans. Biomed. Eng. 61 (2014) 2135–2140, http://dx. doi.org/10.1109/TBME.2014.2315784.
S.H. Liu, W.C. Cheng, Fall detection with the support vector machine during scripted and continuous unscripted activities, Sensors 12 (2012) 12301–12316, http://dx.doi.org/10.3390/s120912301.
S.T. Londei, J. Rousseau, F. Ducharme, A. St-Arnaud, J. Meunier, J. Saint-Arnaud, F. Giroux, An intelligent videomonitoring system for fall detection at home: perceptions of elderly people, J. Telemed. Telecare. 15 (2009) 383–390, http://dx. doi.org/10.1258/jtt.2009.090107
R. Luque, E. Casilari, M.J. Moron, G. Redondo, Comparison and characterization of Android-based fall detection systems, Sensors 14 (2014) 18543–18574, http:// dx.doi.org/10.3390/s141018543.
X. Ma, H. Wang, B. Xue, M. Zhou, B. Ji, Y. Li, Depth-based human fall detection via shape features and improved extreme learning machine, IEEE J. Biomed. Health Inform. 18 (2014) 1915–1922, http://dx.doi.org/10.1109/JBHI.2014.2304357
C. Medrano, R. Igual, I. Plaza, M. Castro, Detecting falls as novelties in acceleration patterns acquired with smartphones, PLoS One 9 (2014) e94811, http://dx. doi.org/10.1371/journal.pone.0094811.
C. Medrano, I. Plaza, R. Igual, A. Sanchez, M. Castro, The effect of personalization on smartphone-based fall detectors, Sensors 16 (2016), http://dx.doi.org/10. 3390/s16010117
S. Mellone, C. Tacconi, L. Schwickert, J. Klenk, C. Becker, L. Chiari, Smartphonebased solutions for fall detection and prevention: the FARSEEING approach, Z. Gerontol. Geriatr. 45 (2012) 722–727, http://dx.doi.org/10.1007/s00391-012- 0404-5.
B. Mirmahboub, S. Samavi, N. Karimi, S. Shirani, Automatic monocular system for human fall detection based on variations in silhouette area, IEEE Trans. Biomed. Eng. 60 (2013) 427–436, http://dx.doi.org/10.1109/TBME.2012.2228262.
D. Naranjo-Hernandez, L.M. Roa, J. Reina-Tosina, M.A. Estudillo-Valderrama, Personalization and adaptation to the medium and context in a fall detection system, IEEE Trans. Inf. Technol. Biomed. 16 (2012) 264–271, http://dx.doi.org/ 10.1109/TITB.2012.2185851.
] M.N. Nyan, F.E. Tay, M.Z. Mah, Application of motion analysis system in preimpact fall detection, J. Biomech. 41 (2008) 2297–2304, http://dx.doi.org/10. 1016/j.jbiomech.2008.03.042.
L. Palmerini, F. Bagala, A. Zanetti, J. Klenk, C. Becker, A. Cappello, A waveletbased approach to fall detection, Sensors 15 (2015) 11575–11586, http://dx.doi. org/10.3390/s150511575
G.S. Parra-Dominguez, J. Snoek, B. Taati, A. Mihailidis, Lower body motion analysis to detect falls and near falls on stairs, Biomed. Eng. Lett. 5 (2015) 98–108, http://dx.doi.org/10.1007/s13534-015-0179-x.
H. Pirnejad, G. Huq, J. Basilakis, A. Maeder, Monitoring falls in elderly people: lessons from a community-based project, Stud. Health Technol. Inform. 206 (2014) 50–61, http://dx.doi.org/10.3233/978-1-61499-456-5-50 (12p).
M. Prado-Velasco, R.O. Marin, G. del Rio Cidoncha, Detection of human impacts by an adaptive energy-based anisotropic algorithm, Int. J. Environ. Res. Public Health Electron. Resour. 10 (2013) 4767–4789, http://dx.doi.org/10.3390/ ijerph10104767.
L. Quagliarella, N. Sasanelli, G. Belgiovine, An interactive fall and loss of consciousness detector system, Gait Posture 28 (2008) 699–702, http://dx.doi.org/ 10.1016/j.gaitpost.2008.04.011
M. Rantz, M. Skubic, C. Abbott, C. Galambos, M. Popescu, J. Keller, E. Stone, J. Back, S.J. Miller, G.F. Petroski, Automated in-home fall risk assessment and detection sensor system for elders, Gerontologist 55 (2015) S78–S87 (1p. geront/ gnv044).
M.J. Rantz, M. Skubic, C. Abbott, C. Galambos, Y. Pak, D.K. Ho, E.E. Stone, L. Rui, J. Back, S.J. Miller, In-home fall risk assessment and detection sensor system, J. Gerontol. Nurs. 39 (2013) 18–22, http://dx.doi.org/10.3928/00989134- 20130503-01.
H. Rimminen, J. Lindstrom, M. Linnavuo, R. Sepponen, Detection of falls among the elderly by a floor sensor using the electric near field, IEEE Trans. Inf. Technol. Biomed. 14 (2010) 1475–1476, http://dx.doi.org/10.1109/TITB.2010.2051956.
W.Y. Shieh, J.C. Huang, Falling-incident detection and throughput enhancement in a multi-camera video-surveillance system, Med. Eng. Phys. 34 (2012) 954–963, http://dx.doi.org/10.1016/j.medengphy.2011.10.016.
E.E. Stone, M. Skubic, Fall detection in homes of older adults using the microsoft kinect, IEEE J. Biomed. Health Inform. 19 (2015) 290–301, http://dx.doi.org/10. 1109/JBHI.2014.2312180.
B.Y. Su, K.C. Ho, M.J. Rantz, M. Skubic, Doppler radar fall activity detection using the wavelet transform, IEEE Trans. Biomed. Eng. 62 (2015) 865–875, http://dx. doi.org/10.1109/TBME.2014.2367038.
S. Tao, M. Kudo, H. Nonaka, Privacy-preserved behavior analysis and fall detection by an infrared ceiling sensor network, Sensors 12 (2012) 16920–16936, http://dx.doi.org/10.3390/s121216920.
V. Williams, C.R. Victor, R. McCrindle, It is always on your mind: experiences and perceptions of falling of older people and their carers and the potential of a mobile falls detection device, Curr. Gerontol. Geriatr. Res. 2013 (2013) 295073, http:// dx.doi.org/10.1155/2013/295073.
F. Wu, H. Zhao, Y. Zhao, H. Zhong, Development of a wearable-sensor-based fall detection system, Int. J. Telemed. Appl. 2015 (2015) 576364, http://dx.doi.org/ 10.1155/2015/576364
G. Wu, S. Xue, Portable preimpact fall detector with inertial sensors, Trans. IEEE Trans. Neural Syst. Rehabil. Eng. 16 (2008) 178–183, http://dx.doi.org/10.1109/ TNSRE.2007.916282.
Y. Xia, Y. Wu, B. Zhang, Z. Li, N. He, S. Li, Wireless falling detection system based on community, J. Nanosci. Nanotechnol. 15 (2015) 4367–4372.
M. Yu, Y. Yu, A. Rhuma, S.M. Naqvi, L. Wang, J.A. Chambers, An online one class support vector machine-based person-specific fall detection system for monitoring an elderly individual in a room environment, IEEE J. Biomed. Health Inform. 17 (2013) 1002–1014, http://dx.doi.org/10.1109/JBHI.2013.2274479.
L. Zheng, L. Wang, D. He, N. Geng, P. Geng, D. Guan, L. Xu, Voltage compensation based calibration measurement of 3D-acceleration transducer in fall detection system for the elderly, Conf. Proc. IEEE Eng. Med. Biol. Soc. 2014 (2014) 2773–2776, http://dx.doi.org/10.1109/EMBC.2014.6944198.
M. Yu, A. Rhuma, S.M. Naqvi, L. Wang, J. Chambers, A posture recognition based fall detection system for monitoring an elderly person in a smart home environment, IEEE Trans. Inf. Technol. Biomed. 16 (2012) 1274–1286, http://dx.doi.org/ 10.1109/TITB.2012.2214786.
F. Zhengming, T. Delbruck, P. Lichtsteiner, E. Culurciello, An address-event fall detector for assisted living applications, IEEE Trans. Biomed. Circuits Syst. 2 (2008) 88–96, http://dx.doi.org/10.1109/TBCAS.2008.924448.
Y. Zigel, D. Litvak, I. Gannot, A method for automatic fall detection of elderly people using floor vibrations and sound–proof of concept on human mimicking doll falls, IEEE Trans. Biomed. Eng. 56 (2009) 2858–2867, http://dx.doi.org/10. 1109/TBME.2009.2030171.
R. Alazrai, A. Zmily, Y. Mowafi, Fall detection for elderly using anatomical-planebased representation, Conf. Proc. IEEE Eng. Med. Biol. Soc. 2014 (2014) 5916–5919, http://dx.doi.org/10.1109/EMBC.2014.6944975.
D. Anderson, J.M. Keller, M. Skubic, X. Chen, Z. He, Recognizing falls from silhouettes, Conf. Proc. IEEE Eng. Med. Biol. Soc. 1 (2006) 6388–6391.
A. Ariani, S.J. Redmond, D. Chang, N.H. Lovell, Software Simulation of Unobtrusive Falls Detection at Night-time Using Passive Infrared and Pressure Mat Sensors, Eng. Med. Biol. Soc. EM2010 BCE Annu. Int. Conf. IEEE, IEEE, 2010, pp. 2115–2118 (Accessed February 25, 2016), http://ieeexplore.ieee.org/xpls/abs_all. jsp?arnumber=5627202.
E. Auvinet, L. Reveret, A. St-Arnaud, J. Rousseau, J. Meunier, Fall detection using multiple cameras, Conf. Proc. IEEE Eng. Med. Biol. Soc. 2008 (2008) 2554–2557, http://dx.doi.org/10.1109/IEMBS.2008.4649721
O. Aziz, E.J. Park, G. Mori, S.N. Robinovitch, Distinguishing the causes of falls in humans using an array of wearable tri-axial accelerometers, Gait Posture 39 (2014) 506–512, http://dx.doi.org/10.1016/j.gaitpost.2013.08.034.
M. Belshaw, B. Taati, J. Snoek, A. Mihailidis, Towards a single sensor passive solution for automated fall detection, Conf. Proc. IEEE Eng. Med. Biol. Soc. 2011 (2011) 1773–1776, http://dx.doi.org/10.1109/IEMBS.2011.6090506.
A.K. Bourke, J. Klenk, L. Schwickert, K. Aminian, E.A. Ihlen, J.L. Helbostad, L. Chiari, C. Becker, Temporal and kinematic variables for real-world falls harvested from lumbar sensors in the elderly population, Conf. Proc. IEEE Eng. Med. Biol. Soc. 2015 (2015) 5183–5186, http://dx.doi.org/10.1109/EMBC.2015. 7319559
A.K. Bourke, S. Prescher, F. Koehler, V. Cionca, C. Tavares, S. Gomis, V. Garcia, J. Nelson, Embedded fall and activity monitoring for a wearable ambient assisted living solution for older adults, Conf. Proc. IEEE Eng. Med. Biol. Soc. 2012 (2012) 248–251, http://dx.doi.org/10.1109/EMBC.2012.6345916
J. Boyle, M. Karunanithi, Simulated fall detection via accelerometers, Conf. Proc. IEEE Eng. Med. Biol. Soc. 2008 (2008) 1274–1277, http://dx.doi.org/10.1109/ IEMBS.2008.4649396.
E. Campo, E. Grangereau, Wireless fall sensor with GPS location for monitoring the elderly, Conf. Proc. IEEE Eng. Med. Biol. Soc. 2008 (2008) 498–501, http://dx.doi. org/10.1109/IEMBS.2008.4649199.
O.T. Chen, C.J. Kuo, Self-adaptive fall-detection apparatus embedded in glasses, Conf. Proc. IEEE Eng. Med. Biol. Soc. 2014 (2014) 4623–4626, http://dx.doi.org/ 10.1109/EMBC.2014.6944654.
F. De Cillisy, F. De Simioy, F. Guidoy, R.A. Incalzi, R. Setolay, Fall-detection solution for mobile platforms using accelerometer and gyroscope data, Conf. Proc. IEEE Eng. Med. Biol. Soc. 2015 (2015) 3727–3730, http://dx.doi.org/10.1109/ EMBC.2015.7319203.
A. de la Guia Solaz, R. Bourke, J. Conway, Real-time low-energy fall detection algorithm with a programmable truncated MAC, Conf. Proc. IEEE Eng. Med. Biol. Soc. (2010) 2423–2426, http://dx.doi.org/10.1109/IEMBS.2010.5626244.
A. Dubois, F. Charpillet, Human activities recognition with RGB-Depth camera using HMM, Conf. Proc. IEEE Eng. Med. Biol. Soc. 2013 (2013) 4666–4669, http://dx.doi.org/10.1109/EMBC.2013.6610588.
A. Edgcomb, F. Vahid, Automated fall detection on privacy-enhanced video, Conf. Proc. IEEE Eng. Med. Biol. Soc. 2012 (2012) 252–255, http://dx.doi.org/10.1109/ EMBC.2012.6345917.
F.J. Fernandez-Luque, J. Zapata, R. Ruiz, A system for ubiquitous fall monitoring at home via a wireless sensor network, Conf. Proc. IEEE Eng. Med. Biol. Soc. 2010 (2010) 2246–2249, http://dx.doi.org/10.1109/IEMBS.2010.5627338.
G. Korats, J. Hofmanis, A. Skorodumovs, E. Avots, Fall detection algorithm in energy efficient multistate sensor system, Conf. Proc. IEEE Eng. Med. Biol. Soc. 2015 (2015) 4974–4977, http://dx.doi.org/10.1109/EMBC.2015.7319508.
Y. Li, K.C. Ho, M. Popescu, M. Skubic, A theoretical study on the placement of microphone arrays for improving the localization accuracy of a fall, Conf. Proc. IEEE Eng. Med. Biol. Soc. 2014 (2014) 4523–4526, http://dx.doi.org/10.1109/ EMBC.2014.6944629.
Y. Li, M. Popescu, K.C. Ho, Improving automatic sound-based fall detection using iVAT clustering and GA-based feature selection, Conf. Proc. IEEE Eng. Med. Biol. Soc. 2012 (2012) 5867–5870, http://dx.doi.org/10.1109/EMBC.2012.6347328.
Y. Li, M. Popescu, K.C. Ho, D.P. Nabelek, Improving acoustic fall recognition by adaptive signal windowing, Conf. Proc. IEEE Eng. Med. Biol. Soc. 2011 (2011) 7589–7592, http://dx.doi.org/10.1109/IEMBS.2011.6091871.
Y. Li, Z. Zeng, M. Popescu, K.C. Ho, Acoustic fall detection using a circular microphone array, Conf. Proc. IEEE Eng. Med. Biol. Soc. 2010 (2010) 2242–2245, http://dx.doi.org/10.1109/IEMBS.2010.5627368.
D. Litvak, Y. Zigel, I. Gannot, Fall detection of elderly through floor vibrations and sound, Conf. Proc. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. IEEE Eng. Med. Biol. Soc. Conf. 2008 (2008) 4632–4635, http://dx.doi.org/10.1109/IEMBS.2008. 4650245.
L. Liu, M. Popescu, K.C. Ho, M. Skubic, M. Rantz, Doppler radar sensor positioning in a fall detection system, Conf. Proc. IEEE Eng. Med. Biol. Soc. 2012 (2012) 256–259, http://dx.doi.org/10.1109/EMBC.2012.6345918.
L. Liu, M. Popescu, M. Skubic, M. Rantz, An automatic fall detection framework using data fusion of doppler radar and motion sensor network, Conf. Proc. IEEE Eng. Med. Biol. Soc. 2014 (2014) 5940–5943, http://dx.doi.org/10.1109/EMBC. 2014.6944981.
R. Narasimhan, Skin-contact sensor for automatic fall detection, Conf. Proc. IEEE Eng. Med. Biol. Soc. 2012 (2012) 4038–4041, http://dx.doi.org/10.1109/EMBC. 2012.6346853.
T.T. Nguyen, M.C. Cho, T.S. Lee, Automatic fall detection using wearable biomedical signal measurement terminal, Conf. Proc. IEEE Eng. Med. Biol. Soc. 2009 (2009) 5203–5206, http://dx.doi.org/10.1109/IEMBS.2009.5334079.
M. Popescu, Y. Li, M. Skubic, M. Rantz, An acoustic fall detector system that uses sound height information to reduce the false alarm rate, Conf. Proc. IEEE Eng. Med. Biol. Soc. 2008 (2008) 4628–4631, http://dx.doi.org/10.1109/IEMBS.2008. 4650244
M. Popescu, A. Mahnot, Acoustic fall detection using one-class classifiers, Conf. Proc. IEEE Eng. Med. Biol. Soc. 2009 (2009) 3505–3508, http://dx.doi.org/10. 1109/IEMBS.2009.5334521.
S.J. Redmond, Z. Zhaonan, M.R. Narayanan, N.H. Lovell, Pilot evaluation of an unobtrusive system to detect falls at nighttime, Conf. Proc. IEEE Eng. Med. Biol. Soc. 2014 (2014) 1756–1759, http://dx.doi.org/10.1109/EMBC.2014.6943948.
J. Rougier, A. St-Arnaud, J. Rousseau, Monocular 3D Head Tracking to Detect Falls of Elderly People, 28th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2006 EMBS 06, 2006, pp. 6384–6387, , http://dx.doi.org/10.1109/IEMBS.2006.260829.
F. Sposaro, G. Tyson, iFall: an Android application for fall monitoring and response, Conf. Proc. IEEE Eng. Med. Biol. Soc. 2009 (2009) 6119–6122, http://dx. doi.org/10.1109/IEMBS.2009.5334912.
Y. Sui, C. Ahn, C.H. Ahn, A new smart fall-down detector for senior healthcare system using inertial microsensors, Conf. Proc. IEEE Eng. Med. Biol. Soc. 2014 (2014) 590–593, http://dx.doi.org/10.1109/EMBC.2014.6943660.
M. Tolkiehn, L. Atallah, B. Lo, G.Z. Yang, Direction sensitive fall detection using a triaxial accelerometer and a barometric pressure sensor, Conf. Proc. IEEE Eng. Med. Biol. Soc. 2011 (2011) 369–372, http://dx.doi.org/10.1109/IEMBS.2011. 6090120.
M. Vallejo, C.V. Isaza, J.D. Lopez, Artificial Neural Networks as an alternative to traditional fall detection methods, Conf. Proc. IEEE Eng. Med. Biol. Soc. 2013 (2013) 1648–1651, http://dx.doi.org/10.1109/EMBC.2013.6609833.
M. Van Wieringen, J. Eklund, Real-time signal processing of accelerometer data for wearable medical patient monitoring devices, Conf. Proc. IEEE Eng. Med. Biol. Soc. 2008 (2008) 2397–2400, http://dx.doi.org/10.1109/IEMBS.2008.4649682.
S.Y. Sim, H.S. Jeon, G.S. Chung, S.K. Kim, S.J. Kwon, W.K. Lee, K.S. Park, Fall detection algorithm for the elderly using acceleration sensors on the shoes, Conf. Proc. IEEE Eng. Med. Biol. Soc. 2011 (2011) 4935–4938, http://dx.doi.org/10. 1109/IEMBS.2011.6091223.
Q. Zhang, L. Ren, W. Shi, HONEY: a multimodality fall detection and telecare system, Telemed. J. E Health 19 (2013) 415–429, http://dx.doi.org/10.1089/tmj. 2012.0109.
Z. Zhang, U. Kapoor, M. Narayanan, N.H. Lovell, S.J. Redmond, Design of an unobtrusive wireless sensor network for nighttime falls detection, Conf. Proc. IEEE Eng. Med. Biol. Soc. 2011 (2011) 5275–5278, http://dx.doi.org/10.1109/IEMBS. 2011.6091305
K.-Y. Chen, M. Harniss, S. Patel, K. Johnson, Implementing technology-based embedded assessment in the home and community life of individuals aging with disabilities: a participatory research and development study, Disabil. Rehabil. Assist. Technol. 9 (2014) 112–120, http://dx.doi.org/10.3109/17483107.2013. 805824
L. Quagliarella, N. Sasanelli, G. Belgiovine, Performances of an accelerometric device for detecting fall and loss of consciousness, J. Appl. Biomater. Biomech. 6 (2008) 119–126.
H.C. Huang, Y.T. Huang, K.C. Lin, Y.F. Kuo, Risk factors associated with physical restraints in residential aged care facilities: a community-based epidemiological survey in Taiwan, J. Adv. Nurs. 70 (2014) 130–143, http://dx.doi.org/10.1111/ jan.12176 (14p).
M.J. Rantz, M. Skubic, S.J. Miller, C. Galambos, G. Alexander, J. Keller, M. Popescu, Sensor technology to support aging in place, J. Am. Med. Dir. Assoc. 14 (2013) 386–391, http://dx.doi.org/10.1016/j.jamda.2013.02.018.
L. Liu, E. Stroulia, I. Nikolaidis, A. Miguel-Cruz, A. Rios Rincon, Smart homes and home health monitoring technologies for older adults: a systematic review, Int. J. Med. Inf. 91 (2016) 44–59, http://dx.doi.org/10.1016/j.ijmedinf.2016.04.007.
J.W. Jutai, M.J. Fuhrer, L. Demers, M.J. Scherer, F. DeRuyter, Toward a taxonomy of assistive technology device outcomes, Am. J. Phys. Med. Rehabil. 84 (2005) 294–302, http://dx.doi.org/10.1097/01.PHM.0000157313.88732. DC.
A. Mahmood, T. Yamamoto, M. Lee, C. Steggell, Perceptions and use of gerotechnology: implications for aging in place, J. Hous. Elder. 22 (2008) 104–126, http://dx.doi.org/10.1080/02763890802097144.
R.J. Holden, B.-T. Karsh, The technology acceptance model: its past and its future in health care, J. Biomed. Inform. 43 (2010) 159–172, http://dx.doi.org/10.1016/ j.jbi.2009.07.002.
K. Chen, A.H.S. Chan, A review of technology acceptance by older adults, Gerontechnology 10 (2011), http://dx.doi.org/10.4017/gt.2011.10.01.006.00
] F.D. Davis, A Technology Acceptance Model for Empirically Testing New End-User Information Systems: Theory and Results, Thesis, Institute of Technology, Massachusetts, 1985.
B. Reeder, E. Meyer, A. Lazar, S. Chaudhuri, H.J. Thompson, G. Demiris, Framing the evidence for health smart homes and home-based consumer health technologies as a public health intervention for independent aging: a systematic review, Int. J. Med. Inf. (2013), http://dx.doi.org/10.1016/j.ijmedinf.2013.03.007.
V. Faucounau, Y. Wu, M. Boulay, M. Maestrutti, A. Rigaud, Caregivers’ requirements for in-home robotic agent for supporting community-living elderly subjects with cognitive impairment, Technol. Health Care 17 (2009) 33–40, http://dx.doi. org/10.3233/THC-2009-0537.
K. Chen, A.H. Chan, Use or non-use of gerontechnology—a qualitative study, Int. J. Environ. Res. Public. Health 10 (2013) 4645–4666, http://dx.doi.org/10.3390/ ijerph10104645
P. Yu, D. Hailey, V. Traynor, R. Fleming, Z. Zhang, Evaluating the impact of implementing of a new wireless telemonitoring system for urinary continence management for older people living in nursing homes, Neurourol. Urodyn. 31 (6) (2012) 974–975, http://dx.doi.org/10.1002/nau.22287.