Publication: Diatomaceous Soils and Advances in Geotechnical Engineering—Part II
Authors
Abstract (English)
Extent
Collections
Collections
References
Flower, R.J. Diatomites: Their Formation, Distribution, and Uses, 2nd ed.; Elsevier B.V.: Amsterdam, The Netherlands, 2013.
Arenaldi, G.; Ovalle, C. Compresibilidad y propiedades dinámicas de suelos diatomáceos de Mejillones Compressibility and dynamic properties of diatomaceous soils of Mejillones Introducción Sector de estudio Material de ensayo. Obras y Proyectos 2019, 25, 6–14.
Mejía, J.M.; De Gutiérrez, R.M.; Montes, C. Rice husk ash and spent diatomaceous earth as a source of silica to fabricate a geopolymeric binary binder. J. Clean. Prod. 2016, 118, 133–139.
Warnock, J.P.; Scherer, R.P. Diatom species abundance and morphologically-based dissolution proxies in coastal Southern Ocean assemblages. Cont. Shelf Res. 2015, 102, 1–8.
Finkel, Z.V.; Kotrc, B. Silica use through time: Macroevolutionary change in the morphology of the diatom fustule. Geomicrobiol. J. 2010, 27, 596–608.
Locat, J.; Tanaka, H. A new class of soils: Fossiliferous soils? In Proceedings of the XV International Conference on Soil Mechanics and Geotechnical Engineering, Istanbul, Turkey, 27–31 August 2001; pp. 2295–2300.
Karp-Boss, L.; Gueta, R.; Rousso, I. Judging Diatoms by Their Cover: Variability in Local Elasticity of Lithodesmium undulatum Undergoing Cell Division. PLoS ONE 2014, 9, e109089
Meng, F.; Gao, G.; Jia, Z. Study on Tribological Mechanism for Multi-layer Porous Structure of Diatom Frustule. Microb. Ecol. 2015, 69, 45–58.
Hamm, C.E.; Merkel, R.; Springer, O.; Jurkojc, P.; Maier, C.; Prechtel, K.; Smetacek, V. Architecture and material properties of diatom shells provide effective mechanical protection. Nature 2003, 421, 841–843. [
Feng, X.; Li, S.; Liao, H.; Yang, C. Identification of non-linear stress-strain-time relationship of soils using genetic algorithm. Int. J. Numer. Anal. Methods Geomech. 2002, 26, 815–830.
Gao, W. A comprehensive review on identification of the geomaterial constitutive model using the computational intelligence method. Adv. Eng. Informatics 2018, 38, 420–440.
Kang, X.; Liao, H. Bounding surface plasticity model for jointed soft rocks considering overconsolidation and structural decay. Comput. Geotech. 2019, 108, 295–307
Kang, X.; Liao, H.; Leng, X. An enhanced bounding surface plasticity model for soft rock subjected to drained and undrained condition. Comput. Geotech. 2020, 127, 103742.
Lin, J.; Sari, M.; Alevizos, S.; Veveakis, M.; Poulet, T. A heuristic model inversion for coupled thermo-hydro-mechanical modelling of triaxial experiments. Comput. Geotech. 2020, 117, 103278
Caicedo, B. Geotechnical centrifuge applications to foundations engineering teaching. In Proceedings of the First International Conference on Geotechnical Engineering Education and Training, Sinia, Romania, 12–14 June 2000; pp. 271–274.
Hernandez, Y. Efecto del Porcentaje de Diatomeas en la Curva de Compresibilidad del Suelo; Escuela Colombiana de Ingeniería: Bogotá, Colombia, 2019.
Zuluaga, D.; Slebi, C.; Ruge, J.; Olarte, M.C. Physical Modeling in Geotechnical Centrifuge of Foundations Supported on Diatomaceous Soils. Indian Geotech. J. 2022, 53, 10.
Garnier, J.; Gaudin, C.; Springman, S.M.; Culligan, P.J.; Goodings, D.; Konig, D.; Kutter, B.; Phillips, R.; Randolph, M.F.; Thorel, L. Catalogue of scaling laws and similitude questions in geotechnical centrifuge modelling. Int. J. Phys. Model. Geotech. 2007, 7, 1–23
Caicedo, B.; Velasquez, R.; Monroy, J. Modelación Física en Centrífuga. p. 31. Available online: https://tycho.escuelaing.edu.co/ contenido/encuentros-suelosyestructuras/documentos/tercer_ent/modelacion_fisica_centrifuga_problemas.pdf (accessed on 3 July 2023).
Wiemer, G.; Dziadek, R.; Kopf, A. The enigmatic consolidation of diatomaceous sediment. Mar. Geol. 2017, 385, 173–184.
Covarrubias, A.; Wang, J.; Moug, D.; Evans, M.; Walter, A. Geo-Congress 2022 ASCE, Charlotte, USA, 20–23 March 2022. In Relating the Proportion of Diatom Particles to the Physical Properties of Natural Diatomaceous Soil. 2022, pp. 479–489. Available online: https://ascelibrary.org/doi/abs/10.1061/9780784484036.047 (accessed on 22 February 2023).
Arenaldi, G.; Ovalle, C.; Barrios, A. Compressibility and creep of a diatomaceous soil. Eng. Geol. 2019, 258, 105145.
Evans, T.M.; Moug, D. Diatomaceous soils: A less than cromulent engineering material. Geotech. Sustain. Infrastruct. Dev. 2020, 62, 709–716.
Zuluaga-Astudillo, D.; Ruge, J.; Camacho-Tauta, J.; Reyes-Ortiz, O.; Caicedo-Hormaza, B. Diatomaceous Soils and Advances in Geotechnical Engineering—Part I. Appl. Sci. 2023, 13, 549. [
Hong, Z.; Tateishi, Y.; Han, J.; Asce, M. Experimental Study of Macro- and Microbehavior of Natural Diatomite. J. Geotech. Geoenvironmental Eng. 2006, 132, 603–610.
Cheng, X.H.; Ngan-Tillard, D.J.M.; Den Haan, E.J. The causes of the high friction angle of Dutch organic soils. Eng. Geol. 2007, 93, 31–44.
Díaz, J. Comportamiento monotónico de suelos diatomáceos. Accid. e Infraestruct. Civ. 2011, 12, 27
Tanaka, H.; Local, J. A microstructural investigation of Osaka Bay clay: The impact of microfossils on its mechanical behaviour. Can. Geotech. J. 1999, 36, 493–508.
Holler, P.R. Consolidation characteristics and permeabilities of sediments from the Japan Sea (Sites 798 and 799). In Proceedings of the Ocean Drilling Program, Scientific Results; National Science Foundation: College Station, TX, USA, Volume 127/128 pt 2; pp. 1123–1133.
Liao, H.; Ning, C.; Akaishi, M.; Zhou, L. Effects of the Time-Dependent Behavior on Strain Softening of Diatomaceous Soft Rock. Met. Mater. 1998, 4, 1093–1096.
Antonides, B.L.E. Diatomites; US Geological Survey Publications: Reston, VA, USA, 1997.
Petrosyan, G. Manifestation of Rock Pressure in Diatomaceous Clays. Gidrotekhnicheskoe Stroit, Federatsiya Energeticheskikh i Elktrotekhnicheskikh Obshchestv, Ural Press. 1973, 32–34. Available online: https://repository.rudn.ru/en/recordsources/ recordsource/42/ (accessed on 22 April 2022).
Crawford, S.A.; Higgins, M.; Mulvaney, P.; Wetherbee, R. Nanostructure of the diatom frustule as revealed by atomic force and scanning electron microscopy. J. Phycol. 2001, 37, 543–554
Tanaka, H.; Locat, J.; Shibuya, S.; Soon, T.; Shiwakoti, D.R. Characterization of Singapore, Bangkok, and Ariake clays. Can. Geotech. J. 2001, 38, 378–400.
Al Shatnawi, H.; Bandini, P. Oedometric Behavior of a Diatom-Kaolin Mixture; Geo-Congress 2019 GSP310; ASCE: Philadelphia, PA, USA, 2019; pp. 673–681.
Day, R.W. Engineering properties of diatomaceous fill. J. Geotech. Eng. 1995, 121, 908–910.
Ovalle, C.; Arenaldi, G. Mechanical behaviour of undisturbed diatomaceous soil. Mar. Georesources Geotechnol. 2020, 39, 623–630.
Shiwakoti, D.; Tanaka, H.; Tanaka, M.; Locat, J. Influences of diatom microfossils on engineering properties of soils. Soils Found. 2002, 42, 1–17.
Caicedo, B.; Zuluaga, D.; Slebi, C. Effects of micro-features of fossil diatom on the macroscopic behaviour of soils. Geotech. Lett. 2019, 9, 322–327. [
Hoang, N.Q.; Kim, S.; Lee, J.-S. Compressibility, stiffness and electrical resistivity characteristics of sand–diatom mixtures. Géotechnique Lett. 2021, 72, 1068–1081.
Rajasekaran, G. Influence of microfossils and pyrites on the behaviour of oceanbed sediments. Ocean Eng. 2006, 33, 517–529.
Wiemer, G.; Kopf, A. Influence of diatom microfossils on sediment shear strength and slope stability. Geochem. Geophys. Geosystems 2016, 17, 1312–1338.
Pérez León, R.F.; Rodríguez Rebolledo, J.F.; Caicedo Hormaza, B. Stiffness and strength parameters for the hardening soil model of a reconstituted diatomaceous soil. Eur. J. Environ. Civ. Eng. 2022, 27, 479–499
Park, J.; Kim, S.; Hoang, Q.; Lee, J. Impact of diatoms on the load-deformation response of marine sediments during drained shear: Small-to-large strain stiffness. Eng. Geol. 2023, 315, 107006.
Pitso, T. Engineering Behavior of Remolded Diatomaceous Silts; Oregon State University: 2022. Available online: https://ir.library. oregonstate.edu/concern/graduate_projects/db78tm13v (accessed on 7 May 2023).
Jeong, S.W.; Park, S.S. Effect of the surface roughness on the shear strength of granular materials in ring shear tests. Appl. Sci. 2019, 9, 2977.
GeoInstitute and C. Santamarina. Terzaghi Lecture—Energy Geotechnology: Habilitando Nuevos Conocimientos Sobre el Comportamiento del Suelo; US. 2014. Available online: https://www.geoengineer.org/news/video-watch-the-2014-terzaghi-lecture (accessed on 6 October 2021).
Caicedo, B.; Mendoza, C.; López, F.; Lizcano, A. Behavior of diatomaceous soil in lacustrine deposits of Bogotá, Colombia. J. Rock Mech. Geotech. Eng. 2018, 10, 367–379.
Wang, J.; Yazdani, E.; Evans, T.M. Case study of a driven pile foundation in diatomaceous soil. I: Site characterization and engineering properties. J. Rock Mech. Geotech. Eng. 2021, 13, 431–445.
Xu, Y.; Zhang, X.; Liu, X.; Wang, G. Alterations of physical properties and microstructure of marine diatomite owing to variation of diatom content. Mar. Georesources Geotechnol. 2022, 41, 376–387.
Qiao, Y.; Tuttolomondo, A.; Lu, X.; Laloui, L.; Ding, W. A generalized water retention model with soil fabric evolution. Geomech. Energy Environ. 2021, 25, 100205.
Ruge, J.; Castro, W.; Camacho, J.; Molina, F. Dependencia de las propiedades de retención de agua en suelos caoliníticos con contenidos de microalgas fosilizadas adicionadas artificialmente. In Geotech. Eng. XXI Century Lessons Learn. Futur. Challenges; IOS Press: Amsterdam, The Netherlands, 2019; pp. 780–787
Rodriguez, J.; Caicedo, B.; Pérez, R. A new proposal to simulate soft soils for centrifugal models using reconstituted diatomaceous soils. Acta Geotech. 2023, 18, 4141–4155.